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1. INTRODUCTION

a. Statement of the problem

Thunderstorms are meteorological phenomena of great importance to
meteorologists because of the energy conversions and momentum transports
which occur. Manifestations of the above are the damaging winds and
hail so often observed. Unfortunately, the prediction of the occurrence
and intensity of these storms has been a problem of substantial signifi-
cance for meteorologists that has defied easy solution. There are
several reasons for this. First, a thunderstorm ranges in diameter from
a few tens to one hundred kilometers and lasts on the ordex of
103 to 104 seconds. Such mesoscale phenomena elude detection by most
routine observations. Also, the analysis and forecast schemes that are
in operational use are applied to areas and time scales much greater than
these. The larger scales permit only a degree of success in predicting
large areas in which the likelihood of thunderstorm occurrence is great
(Fawcett, 1977). Another reason is that our knowledge of the dynamics
and thermodynamics of thunderstorms is not sufficient to explain these
phenomena. Also, the precise nature of the interactions between the
large- and small-scale circulations is not sufficiently well understood
(Barnes, 1976) for the purpose of exact forecasting.

One approach to the solution of the forecasting problem is through
parameterization of large-scale processes and use of appropriate statis-
tical techniques. There may be information from present observations

that, when used in certain combinations, can improve the prediction of

The citations on the following pages follow the style of the
Journal of Applied Meteorology.




thunderstorms over a 2~ to 5~h period. For periods less than 2 hours,
persistence and radar pattern recognition techniques should give the

best results. For periods beyond 5 h, it is unlikely that observations

will reflect the structure of the atmosphere which produces thunderstorms.
Furthermore, theré may be improvement in prediction if upper-~air data
were collected at more frequent intervals. Finally, optimum combina-
tions of parameters determined by statistical techniques may lead to
improved physical models.

The hypotheses underlying this research are that manifestations of
the thermodynamic and hydrodynamic interactions which evolve into in-
tense convection in the atmosphere can be detected in roﬁtine observa-
tions and that these observed parameters can be used in a statistical
model (which minimizes the unexplained variance of observed thunder-

storms) for prediction.

b. Previous studies

1) Nature of thunderstorms

Thunderstorms occur in comparatively small regions in the atmosphere.
Prior to 1947 there were few measurements of meteorological variables
in and near thunderstorms, so that circulation, pressure, temperature,
and moisture patterns were known only gqualitatively. With the realiza-
tion of the Thunderstorm Project (Byers and Braham, 1949), however, our
quantitative knowledge increased significantly. Measurements collected
over a 2-yrperiod established the horizontal and vertical structure of
many meteorological variables associated with thunderstorms and confirmed

the existence of multiple convective cells in various stages of develop-

ment.



Scorer and Ludlam (1953) proposed a bubble theory of convection
that explains many of the observed features of a growing convective
element. In this concept, the kinematics resemble those of a spherical
vortex, as discussed by Woodward (1959) and Turner (1964). Later stages
better resemble a jet of upward-moving air (Squires and Turner, 1962)
which exists in nearly steady state, particularly in the presence of
vertical wind shear. Ludlam (1963) discussed the role of the tilted
updraft core, a manifestation of wind shear, as a natural way to shield
the updraft that generates energy from the destructive influences of
precipitation-induced downdrafts and environmental entrainment.

Recent meteorological literature contains many articles concerning
thunderstorms, their interactions, intensification, movement, and struc-
ture. It is not our purpose to review these in detail, but the follow-
ing synopsis will point out the complexity of thunderstorms and environ-
mental interactions with which we must be concerned.

Thunderstorms grow from a few kilometers in diameter to large,
quasi-steady supercells 20-50 km in diameter (Browning and Ludlam, 1962).
They can last from 30 min to many hours. Such storms may or may not
spawn tornadoes, rotate, contain destructive downdrafts or hail, or exist
in strong wind shear. Even the simple cumulus source is not simple at
all, as pointed out by Auer (1976) from his observations of distortions
of Oe fields near a cloud boundary. The entraining plume model falls
short of describing the thunderstorm documented by Saunders and Paine
(1975). In this severe supercell there was little downdraft at the
surface, but a mesoscale updraft-downdraft doublet aloft seemed to per-

mit vertical motions .to persist for several hours without large



perturbations in isentropic surfaces. Lemon (1976) discusses a flanking
line thunderstorm which includes.both multicell and supercell storms
that derive impetus from entrainment of flanking cells. Stiil another
category termed "spearhead echo" by Fujita and Byers (1977) has in-
tense destructive downdrafts which appear to be tied to overshooting
tops of clouds at the anvil level. Finally, a fascinating observation
that "the growth of vigorous squall lines and severe weather are sharp-
ly inhibited at and to the south of the subtropical jet" is documented
and explained by Whitney (1977).

As new mesoscale observational tools, such as Doppler radar and
storm satellites (Shenk, et al., 1976), are added to our operational
inventory, we are likely to observe even more differences among thunder-
storms. Now, we have observations of internal motions within cells from
experimental Doppler radar (see, for example, Brandes, 1977; Kropfli
and Miller, 1976). Complicated motion patterns of outflow aloft and
jet stream interaction can be observed from stationary satellite picture
composites. The intricate details of overshooting, which seem to be
linked to tornado formation, can be seen from satellite film loops as
well.

There is no "typical" thunderstorm. Each storm is unique in many
respects. It is highly unlikely that identical environmental impulses
exist on different days or even in different locations on the same
day. It is not surprising that modelers and forecasters have much
difficuity in their tasks of understanding and forecasting these phe-
nomena,

Concerning the environment, we know that conditions necessary for



severe convective development involve a) convective instability and a
1lifting mechanism to release it, b) abundant low-level moisture over
which a dry-air intrusion exists, and c¢) bands of strong winds in the
lower and upper levels (Miller, 1972). For less severe storms this
list reduces to moisture, potential instabilityl, and a trigger , These
conditions must be identified through existing meteorological data net-
works and numerical prognoses.

2) Forecasting procedures

Present forecasting procedures are somewhat subjective, and there-
fore strongly influenced by a person's knowledge and experience. As
these vary with individuals who tend not to stay at one location,
thunderstorm forecasting procedures for a given point are highly vari-
able. A typical forecast involves 1) a study of the existing and past
large—-scale weather patterns with emphasis on the location of discon-
tinuities and features discussed in the preceding paragraph, 2) an
analysis of stability of the atmosphere from the nearest and latest
upper-air sounding, 3) evaluating the latest available numerical fore-
casts and interpolating for a given time and location, 4) a closer look
at the local weather and hourly changes, particularly from surface
observations and radar, and 5) a decision on whether or not all the
ingredients for thunderstorms will exist at the station for the future
time in question. This last step requires synthesizing all the data
from the previous steps.

Objective techniques offer several advantages. They do not regquire

1 . -
Defined by Palmén and Newton (1969, p. 345) to include both con-
vective and conditional instability.



extensive personal experience; they can synthesize a great amount of

data rapidly and effectively; they can be automated. Furthermore, they
can be developed to make maximum use of historical observations. Finally,
established rules fof parameterizations can be followed.

There are three steps in a parameterization approach. First, one
must know the processes (equations) involved. Next, relevant parameters
must be combined in an appropriate functional relationship. Finally,
one must test the results. A more detailed description of parameteriza-
tion techniques is given in the Global Atmospheric Research Programme
(GARP) Publication No. 8 (1972).

A statistical approach to thunderstorm forecasting is used partly
to alleviate the disparity between the lack of understanding and the
need for prediction, partly to glean as much information as possible
from existing data, and partly to gain the benefits of objective fore-
casting schemes. The forecasting of mesoscale phenomena by statistical
techniques is not new. Persistence probability has aided the operational
forecaster in predicting changes in ceiling and visibility as well as
the onset and duration of critical values of meteorological variables.
Endlich and Mancuso (1968) combined a number of measured atmospheric
quantities into several kinematic and thermodynamic parameters which
were correlated with severe thunderstorms and tornadoes. Similarly,
cobservational data were used in an objective (statistical) procedure
to forecast severe thunderstorms and tornadoes by Miller and David (1971).
Probability-of-precipitation forecasts and other model output statistics
have been available for several years (Glahn and Lowry, 1972). More

recently, 24-h forecasts of probabilities of thunderstorms and severe



thunderstorms have become available from the National Weather Service
(Alaka et al., 1973). In these procedures, various potential predictors
from numerical forecasts were used in a screening regression program.
Those predictors selected account for a certain fraction of the total
variance of observed thunderstorms as derived from historical manually
digitized radar (MDR) data (Moore et al., 1974). Finally, a statistic#l
regression forecast for severe thundexrstorms 2 to 6 h in the future also
recently became available (Charba, 1975). Genera; thunderstorm fore-
casts were added during the spring of 1976, and other improvements were
made in 1977 by Charba (1977) (see, also, the National Weather Service
Technical Procedures Bulletin 194).

In these latter procedures predictors were derived from surface ob-
servations and dynamic model forecasts. An advantage to the use of
parameters from forecast models is that the physics of the circulation
system is included., A disadvantage, however, is that changes to the
model necessitate development of new equations, as the o0ld regression
equations apply only to variables calculated from the former model.
Another disadvantage is that inaccuracies in the forecasts will limit
the degree to which the model can describe the predictand. Finally,
predictors lose their simple interpretation in that forecast elements
include biases from the model. In this research the disadvantages are
eliminated, and the physics will be included to the greatest extent

possible in the choice of candidate predictors.

c. Objectives

Within the general framework of developing a statistical model to

forecast thunderstorms in a 2- to 5-h period will be the following



objectives: developing parameters for candidate predictors that are
consistent with known physical processes, parameterization methods, and
interactions between systems of -different scale, relating various test
statistics to available verifications of existing thunderstorm-forecast~
ing methods, developing a way to use the spatial variation of meteoro-
logical variables to best advantage when many independent variables are
involved, interpreting statistical results in terms of violations of
model assumptions, assessing the influence of upper-air observations
available at 3-h intervals, and finding optimum times for the dependent
variable and time changes for selected predictors.

This research will extend the work of Charba (1977) and others in
several important ways. First, different statistical models will be
evaluated such as principal component analysis, variable selection, and
discriminant analysis. Analysis-of-variance statistics will be examined
along with plots of key parameters to determine the magnitudes of
errors due to assumptions made in the models. Secondly, the final model
will be tested on an independent data sample. These statistics will
be related to actual verifications of thunderstorm forecasts. Thirdly,
upper-air observations will be employed and their importance to observed
(by radar) thunderstorms assessed. A unigque set of upper-air data
collected during atmospheric variability experiments (Fucik and Turner,
1975) will permit calculations of upper-air parameters every 3 hours
for one day. These data are available usually at 12-h intervals.
Finally, potential predictors will be calculated from the observed
variables in a way which will minimize intercorrelations which exist

naturally in this type of data.



As long as a short-period forecasting reguirement exists, meteo-
rologists must strive to produce the best forecasts possible. This
research will contribute to that goal, and may also aid in the underly-
ing goal of understanding the complex interactions of atmospheric

parameters which culminate in thunderstorms.

d. Importance

Meteorological data networks and numerical forecasting techniques
are established for the synoptic scale of atmospheric analysis and pre-
diction. A true mesoscale data network is prohibitively costly and
could not be handled with present computer systems. Until new observa-
tional tools such as Doppler radar and geosynchronous satellites are
perfected and automated, we are constrained in making point forecasts
of mesoscale phenomena such as thunderstorms with present-day data.
These data consist of 1) hourly surface reports from stations spaced
approximately 150 km apart, 2) hourly radar reports manually digitized
from a network in the eastern two-thirds of the United States, 3) satel-
lite photographs at 30-~min intervals available at selected locations,
and 4) 12-h upper-air observations from stations spaced approximately
300 km apart. Our task, then, must be to extract as much information
as possible from these data. This is made more realistic, physically,
by the postulate that the energy required to initiate the development.
of mesoscale systems is contained within the synoptic-scale systems

(Global Atmospheric Research Programme, 1972, p. 1).



2. STATISTICAL APPROACH

The theory of classical statistical methods such as least squares
and regression analyses is well documented (see, for exémple, Draper
and Smith, 1966; Morxrison, 1976; Neter and Wasserman, 1974), and will
only be presented here to the extent necessary to facilitate discussions
of model assumptions, variable selection techniques, and results.
Errors resulting from violations of model assumptions, and also from
use of a binary dependent variable and intercorrelated independent
variables will be presented. We will conclude with discussions of the
interpretation of results for a regression model and principal component

analysis.

a. Linear models

Since the exact form of relationships between dependent and inde-
pendent variables is unknown, a common assumption (and good starting
point) is that of a linear relationship of the form

Yo =By * Byxyy HByx, F e H B X FE, (1)

In this study, Yi' the dependent variable, indicates a yes-no occurrence
of thunderstorms for a given time interval during a day and given com-
bination of grid points by assuming values of one and zero, respectively.
The independent variables, x's, are obtained from the measured or
analyzed observations. The error or residual term, Ei, is due to the
fact that the occurrence of thunderstorms cannot be precisely predicted.
The Bj's are the partial regression coefficients which relate observed
conditions to the occurrence of thunderstorms. These coefficients

are estimated from the data so as to minimize the sums of squared

10



differences between actual and estimated values of the dependent vari-
able. Estimates of the Bj's are denoted by Ej. This latter procedure

amounts to minimizing the following:

- B x, )2. (2)

n ~
Lo - leil ot m im

i=]1 i - gO
This term is called the sum of squares of the errors or SSE. Differen-
tiating (2) with respect to @o, El, con @m and setting each equal to
zero, we get a set of Nérmal Equations which can be written in matrix
notation

(X'x)8 = x'¥Y, (3)

where capital letters are matrices, underlined terms are vectors and a
prime denotes the transpose of a matrix. Here (X'X) is the sum of
sqguares and cross products of all independent variables and is called
the variance~covariance matrix since we are dealing with corrected (mean
subtracted from each observation) values. From (3) one can see that 8
can be obtained by multiplication of X'Y by the inverse, (X'X)_l. The
partial regression coefficients, Bj's, indicate the change in Y associ-
ated with a unit change in x while all other x's remain constant. The

fact that ¥ is a binary variable makes no difference in these calcula-

tions.

b. Partitioning sums of squares

The statistical analysis continues by partitioning sums of squares
in the fashion of analysis of variance (ANOVA) to determine the signi-
ficance of the analyses as a whole as well as that of individual
coefficients. The total (corrected) sums of squares can be partitioned

as follows:

11



The term on the left is simply n times the variance of ¥ or total sum

of sqﬁares (sST). The first term on the right is the sum of sguared
deviations of observed data from estimates based on the model. It is

the residual sum of squares of the errors (SSE). The last term repre-
sents the sum of squared differences between the model estimates and
estimates when no model is assumed. This is usually called the sum of
squares due to regression (SSR). A mean square regression (MSR) and mean
square error (MSE) are obtained by dividing SSR and SSE by their
respective degrees of freedom. The partitioning is summarized in Table

1l. The ratio of MSR/MSE forms the basis for the statistical F-test for

Table 1. Analysis of variance.

Source of Degrees of Sum of Mean F
variation freedom Squares Squares

- 2
Total n-1 S8T=X (Y-Y) — -—
Regression m SSR=RX'Y SSR/m MSR/MSE
Residual n=-m-1 SSE=SST-SSR SSE/n-m-1 -

an hypothesis that there is no linear relation or that f=0. Another
ratio used in regression analysis is the ratio of the sum of squares of
regression to the total sum of squares, SSR/SST. This quantity is
sometimes called the coefficient of determination and its symbol is

2 . 2 . .
R°. We can interpret R as the fractional amount of total variance

12




accounted for by the linear combination of variables. The significance
of individual partial §:s can also be examined, but can be misleading
when x's are interrelated; that is, when it is impossible to vary one x
and hold all others constant. This problem will be examined in para-

graphs d and e.

c. Model assumptions and violations

1) A linear model correctly describes the data.

The correct model is not known. Even if the model is of the form
in (1), which parameters should be included? Variable selection tech-
nigues aid in this choice but do not guarantee that the best2 subset
has been chosen.

Within the framework of linear regression non-linear predictors are
included. Linear regression refers to linear parameters (f's), not
linear independent variables. It is unlikely that all predictors are
exactly linearly related to the occurrence of thunderstorms. Fortu-
nately, in a rather broad range for many predictors, the linear approxi-
mation is representative of the association between dependent and
independent variables. We can linearize them, if we choose, by replacing
the original variable by a transformed version more nearly linearly
related to the predictand; however, we are not sure about 'its behavior
when it coexists in the model with other predictors. In several attempts
to linearize predictors, the overall improvement in R2 was less than

3.0%. Also, once predictors are linearized, the equations are more

2Best or optimum refers to the maximum possible reduction.of vari-
ance that can be achieved with the given linear combination of variables.
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difficult to use in an operational environment. Finally, other errors
to be discussed next appear to be more serious. Therefore, linéariza—
tion was not pursued in this research.

2) The x's are measured without error.

We know that there are errors in measuring all variables. Not only
are there errors in measuring basic variables such as temperaturé and
wind, but also there are errors due to finite difference approximations.
Unfortunately, the original data spacing and analysis procedure limit
the smallest space interval for which unique information is available.
Measurement error is not a problem in this study because it is small
compared to the total variance of the x's. For example, the temperature
error may be 0.5 K whereas the range of temperature may span 50 K.

3) The values of £ are independent, random, normally-distributed
variables with a mean of zero and constant variance.

This term is estimated by residuals or differences between observed
and predicted values from the computed linear function. Each item will
be discussed separately.

Independent £€: Meteorological variables are functions of time;
however, the time dependency in our case is somewhat masked because we
input data from a sequence of 36, 30, 30, 36, ... giid points for suc-
cessive days. In other words, day 1 contains 36 data points; days 2
and 3 contain 30 points; day 4 contains 36 points, etc. This scheme is
a consequence of the data input algorithm and remained the same for all
days in this study. Also, which time dependence (one day, two days,
etc.) is important? This dependence probably changes with different

synoptic situations, and the overall effect is masked by other problems
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to be discussed.

Randomly distributed £: A correctly specified model should show
residuals which are random when plotted against an independent variable.
While plots show definite non-randomness, it is most likely due to many
peculiarities vresulting from a dichotomous, dependent variable. These.
will be discussed in paragraph 5. Violations of the assumption that €
is randoml?Jdistributed are called specification error and result from
not knowing the correct model form and not including the correct vari-
ables. The residual sums of squares, SSE, is, therefore, inflated and
estimates of regression coefficients may be biased. There is no good
way of dealing with this problem except to recognize possible nonlinear-
ities in predictors and include physically relevant parameters. We are
'naturally constrained in this latter work by our fixed observational
networks.

g of constant variance, mean of zero: It is assumed that €'s are
from a single population with zero mean and variance 02. The mean is
zero but variance is a function of the x's due to the nature of the
predictand in the sample used in this study. This error is termed
heteroskedasticity.

Next, we will consider these last few problems in more detail.

5) Special problems for a dependent, binary variable.

In addition to the error of specification, there are several prob-
lems unique to the use of a binary dependent variable., The first and
most obvious is that the error term can assume just two values depending
on whether the predicted value is subtracted from zero or one. Fig. 1

is a plot of residuals for a typical predictor, W, which is positively
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Fig. 1. Plot of mixing ratio versus residual from regression model.
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correlated to thunderstorm occurrence. Each letter represents the
number of observations corresponding to its position in the alphabet.

A is one observation; Z represents 26 observations. Errors are clus-
tered around small negative values (when Y is zefo) and medium positive
values (when Y is one and the predicted values are weighted toward

zero dge to the influence of all the zero observations). Obviously,
the assumption of normality is not valid. The second problem is that
the variance of ei is a function of x, (Neter and Wasserman, 1974).
Finally, since Yi is similar to a probability of occurrence3, this
number should lie between zero and one. The regression response func-
tion does not automatically possess this property. Figure 2 is a plot
of residuals versus predicted values for the dependent sample. Predicted
values range from -0.2 to 1.2, but the mean is about 0.15.

Concerning the first problem, even though error terms are not
normal, the least squares procedure still provides unbiased estimates.
Further, when sample sizes are large, the distribution of estimates is
asymptotically normal so that inferences concerning the regression
coefficients and mean responses can still be made. Variable selection
procedures, then, can still produce satisfactory results though little
mention of "significance" will be made in this work. The second problem
can be dealt with through weighted regression (Neter and Wasserman,
1974) . Weights are assigned to observations in such a way that re-

sponses or predicted values near zero or one receive maximum weight.

3We are trying to predict an occurrence which is represented by a
one or a non-occurrence represented by zero in a continuous fashion.
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This type of regression was not performed because the observations of
thunderstorms are already weighted by virtue of low climatological
frequencies of thunderstorm occurrence. An attempt was made to deal
with the problem through inclusion of random samples of no-thunderstorm
observations and through prior screening of no-thunderstorm cases by
critical values of selected predictors. The problem of predicting
less than zero or greater than one is not particularly serious since
the threshold for forecasting thunderstorms from predicted values is
arbitrary. Nevertheless, it appears that fitting a logistic function
such as

Y = (exp(~-10.0 + 0.1x))/(1 + exp(~10.0 + 0.1x)) (5)
would eliminate this problem. Such a function is shown in Fig. 3 for
one independent variable.

It can be linearized by the simple transformation,
Y' = In (Y/(1-Y)). (6)

Special precautions are required for zero predicted values. Note that
here, too, added weight is given to both near-zero and one predictors.
Glahn and Bocchieri (1975) used a similar function in an objective
forecasting scheme and found difficulties in some cases due to the
symmetric nature of the curve and poor fit near the threshold probabil-~
ity for yes-no forecasts. Also, fitting this function is not easy
unless there are repeat observations for each level of x. Such is not

the case with the data used in this research.

d. Multicollinearity

Another more serious problem results from use of interrelated

predictors (x's). The x's are in fact related in at least three ways.
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First, the basic, measured variables are related through physical laws
and relationships such as the gas law, first law of thermodynamics, or
thermal wind equation; therefore, parameters derived from the basic
variables are related. This problem is usually exaggerated by using
the basic five surface variables and five upper-air variables (the
latter for each of four chosen pressure levels in the troposphere), and
computing up to 35 parameters for more than twice as many points in
space as there are original data measurements4. Also, several measures
of the same basic dimension, say stability, are calculated because

the best measure of stability is not known. Therefore, many more
variables than we need are included. Secondly, variables are related
in space for many hundreds of kilometers. The very concept of an air
mass suggests a dependence for many variables. Finally, there is a
time dependence in that meteorological variables on one day are cor-
related to those on the next day (or longer).

The problem of intercorrelated "independent" variables is called
multicollinearity and for data in this research is severe enough to pre-
vent us from calculating (X'X)_l since near-singularities exist5.
Therefore, we must use a variable-selection technique to be discussed
in Section 2e or a principal component analysis discussed in Section 2g.
When an inverse can be computed and the model is correct, then the

regression coefficients estimated by the least squares technique are

This is a consequence of the analysis schemes, and the price paid
for trying to preserve as much detail as possible.

A generalized inverse can be calculated; however, the estimates
of the coefficients would be biased.
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unbiased. This means that the expected values computed from repeated
samples will approach the correct value in the mean. The space-cor-
relation problem is reduced by use of every fourth grid point in the

statistical analyses.

e. Variable selection methods and inference

Fortunately, the regression analysis is robust in that even moderate
deviations from the assumptions do not invalidate results. The signi-
ficant problem of multicollinearity, however, can have severe influences
(even critical in our case with all variables where the X'X matrix is
near singular). Of many interrelated variables, which should be kept
in the model? To deal with this problem, four different variable
selection techniques were used in this study; all try to choose subsets
of predictors which minimize the residual mean square (MSE). They are
forward selection, backward elimination, stepwise, and maximum R
improvement.

1) Forward seleétion

This procedure, often called step-up, begins by choosing that
variable which is most highly correlated with the dependent variable.
The second variable is chosen by seeking the next most highly correlated
of the remaining independent variables with the dependent variable,
according to the partial correiation coefficient. In other words, for
each remaining independent variable, a partial F-statistic is calculated
that reflects that variable's contribution to the model were it to be
included. If this statistic for one or more variables has a "signifi-
cance level" greater than a specified amount (0.50 is used in this

study), then the variable with the largest F is included. This process
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is repeated and variables added one at a time until none passes the F-
test or no more remain. Once a variable is added to the model, it
must remain whether or not its influence is negated by other wvariables
added. This procedure is likely to give near optimum few-variable
models, but deteriorates as more are added.

2) Backward elimination

In this technique, also called step-down, the model with all vari-
ables is considered; then variables are deleted one at a time starting
with the one whose B exhibits the lowest F-statistic. Here, we are
likely to get optimum many-variable models but poor results when more
and more variables are deleted since they can never be included again.

3) Stepwise

This procedure is a refinement of forward selection. At each step
before determining the next variable to be added, the F-statistics are
checked for the coefficients already chosen to see if any should be
deleted based on another prespecified "significance level" (in our case
0.1). Only after this check for deletion is made can another variable
be added. The procedure terminates when no partial F is 2 0.5 or a
variable to be added is one just deleted. This procedure is most
appealing so far; but, still an optimum subset is not guaranteed (Draper
and Smith, 1966). Stepwise is the predominant procedure used in this
research.

4) Maximum R2 improvement

A one~-variable model is chosen as with forward selection. Then
every combination of variables with this one is examined. When two

variables are included each of these is compared to each variable not
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in the model. For every comparison it is determined if removing the
variable in the model and replacing it with the excluded variable
would increase_Rz. After all comparisons, the switch is made that
gives the higheét R2. This process continues with each variable added.
Optimum one-to-eight variable models are most likely to be found, but
the costs in computer processing are high when more than 20 candidate
prédictors are used (Barr et al., 1976).

Although variable selection procedures do not guarantee that an
optimum subset of predictors is chosen, the stepwise procedure does a
credible job up to about the fourth variable for data in this study.
Comparisons were made of variables selected by the stepwise procedure
with those from the best four- to seven-variable models where all
possible regressions were considered. In all cases the four-variable
models were identical. The five- and six-variable models differed by
just one variable. The best seven-variable model differed by two vari-
ables. Due to computer-processing limitations, comparisons were not
exact in that only 18 of 25 predictors were considered for all possible
regressions. Even for this combination there were 31,824 possibilities.
In the case of the seven-variable model, the two variables not selected
by the "best" procedure were not available to it. Beyond five pre-
dictors there could be any number of variable combinations which produce
the same or even slightly higher R2. Therefore, discussions of variable

combinations will usually be limited to the first four or five.

f. Interpretation of regression-model results

In these discussions, intense convection, thunderstorm occurrence,

and MDR24 are used synonymously, though the latter is the true
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predictand. The coefficient of determination, R2, the amount of wvari-
ance accounted for by the linear combination of variables, and reduction
of total variance due to the regression model also are used synonymously.
Finally, independent variables, predictors, and x's mean the same as do
dependent variable, Y, and predictand.

Models of form (1) are used where particular x's, parameters, are
chosen by variable selection technigues discussed in Section 2e. The
associated coefficients, Bj's, are computed according to the least
squafes method (Section 2a). Analysis of variance tables such as shown
in Table 1 (p.l2) are produced for every different combination of inde-
pendent variables and for all data subdivisions. A few of these tables
for important combinations of parameters are shown in Appendix A. In
general, however, only summaries are included in the text. These
summaries present the total R2, number of variables (x's) which pro-
duced the R2, mean square error for this number of variables, and
occurrence frequency for the dependent variable (frequency of thunder-
storm occurrence). Also shown are the variables selected in the order
in which they were chosen, the cumulative R2, and the sign of the
partial regression coefficient (B) for each data stratification. 1In
order to reconstruct the linear equation for a given combination of
variables, the partial regression coefficients from Appendix A are
required. These coefficients are then substituted into (1) together
with their respective predictors.

Although R2 will be discussed to some extent, the R2 differences
from sample to sample must not be interpreted to imply improved re-

gression results unless the proportion of ones (as opposed to zeros) is
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also the same. For a binomial distribution the variance is given by
np(l-p). Since this term appears in the denominator of R2, an increased
p (up to 0.5) results in a lower R2 given the same regression sum of
squares. Three examples follow, each using similar but artificial data
with one iﬁdépendent, continuous variable positively correlated to one
dependent, dichotomous variable.

1) Example one: occurrence frequency 10%

Assume there are ten observations of dependent variable y and
independent variable x and that the frequency of ones is 10%. The data
and regression analysis are shown in Table 2.

Table 2. Data and regression analysis for 10 observations of hypo-
thetical variables x and y with 10% occurrence frequency.

y (y-y) (v-y) x (x=-x) {(x~x) (x=x) (y=y) [(x=-x) (y-y) ]2 Summary Statistics
- =2

0 -0.1 0.01 2 -1 1 0.1 0.01 _I((x-x) (y-y)

0 -0.1 0.0 2 -1 1 0.1 0.01 SSR = T2 = 0.330

0 -0.1 0.01 2 -1 1 0.1 0.01 _ -2

0 -0.1 0.01 3 0 0 0.0 0.00 SST = I(y-y)” = 0.9

0 -0.1 0.01 3 0 0 0.0 1 0.00 2 ssm

0 -0.1 0.01 4 1 1 -0.1 0.01 R® = 2or = 367

0 -0.1 0.01 2 -1 1 0.1 0.01

1 0.9 0.81 5 2 4 1.8 3.24 - - ~

0 -0.1 0.00 3 0 0 0.0 0.00 ¥=3.0; y=01=p

0 -0.1 0.01 4 1 1 -0.1 0.01

1 0.90 30 10 3.30  Sum

2) Example two: occurrence frequency 30%
Table 3 illustrates another example with the same sample size but
different occurrence frequency. Note that as the occurrence frequency

2 . . .
increases, R~ decreases. This decrease is a consequence of the in-

creased variance of y (higher p).
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¥

COHOOOOKrKHO

Data and regression analysis for 10 observations of hypo-
thetical variables x and y with 30% occurrence frequency.

L3 (y-71 12

(x—;) (y-;) Summary Statistics
0.3 0.09 — =2
0.7 0.49 SSR = 2“;'(")_1)' 1 _6.20
0.7 0.49 *=x
0.3 0.09 —

: . SST = Liy-y)2 = 2.10
-0.3 0.09 2 ss
0.3 0.09 = ﬁ = 0.138
1.4 1.96
0.3 0.09 - -
0.3 0.09 x=3.0; y=0.3=p
3.48 Sum

3.

— = - -2
Y-y (y-y) X x-x (x-x)
-0.3 0,09 2 -1 1

0.7 0.49 4 1 2
0.7 0.49 4 1 1
-0.3 0,09 2 -1 1
-0.3 0.09 3 o] [+]
-0.3 0.09 4 1 1
-0.3 0.09 2 -1 1
0.7 0.49 5 2 4
-0.3 0.09 2 -1 1
-0.3 0.09 2 -1 1

2.10 30 12

3) Example three:

random sampling

. . 2,
We will now consider the effect of random sampling on R in

Table

4. Table 3 is duplicated for all occurrences but for only 57%

of the nonoccurrences.

Table 4. Data and regression analysis for 57% of nonoccurrence
observations in Table 3 data.
— — 2 — — 2 - - - =2 .
y (y-y) (y-y) X X=X (x=x) (x-x) (y-y) [(x-x) (y-¥)] Summary Statistics
0 -0.429 0.184 2 -1.143  1.306 0.490 0.240 SR = L x-20 (y-3)1°
1 0.571 0.329 4 0.857 0.735 0.489 0.239 T T T Tew< = .263
1 0.571 0.326 4 0.857 0.735 0.489 0.239 —,
0 -0.429 0.184 3 0.143 0.020 -0.061 0.004 SST = L(y-y)" = 1.714
0 -0.429 0.184 2 -1.143  1.306 0.490 0.240 2 ser
1 0.571 0.326 5 1.857  3.449 1.060 1.124 R® = 222 = 0.154
0 -0.429 0.184 2 -1.143 1.306 0.490 0.240 _
X =3.14; y = 0.429 = p
3 1.714 22 8.857 2.328 Sum

different occurrence frequencies and the random sample.

Table 5 shows the comparison of pertinent statistics for the

In the case of

the random sample, sums of squares of x's decrease relative to the

other cases because X increases.

Total sum of squares, Z(y—?)z,

decreases compared to the 30% sample in this case because there are

fewer elements to sum.
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Table 5. Comparison of Tables 2, 3, and 4.

Term Table 2 Table 3 Table 4
10% ones 30% ones Random (43% ones)

X, 3.0 3.0 3.140
I (x-X) 10.0 12.0 8.857
Y, 0.1 0.3 0.429
Z(y-9) " 0.9 2.1 1.714
L[ (x-X%) (y=y)1 3.30 3.48 2.328
SSR 0.330 0.290 0.263
R? 0.367 0.138 0.154
MSE 0.071 0.226 0.289

n 10 10 7

decreases but at a slower rate than in Table 3. Consedquently, R2 in-

creases for the random sample compared to the 30% case. It is clear
from these examples that R2 cannot be used as a measure of relative
strength of the regression model when the frequency of occurrence
changes. The only true measure of "goodness" will be the performance

of the function in an operational environment.

g. Principal component analysis

Another way to approach the multicollinearity problem is through
a technique called princ;pal component analysis first introduced to
meteorology over two decades ago by Lorenz (1956). Brier and Meltesen,
(1976) give a brief history of meteorological applications. Only a
summary of the methodology will be presented here.

Assume that new variables, principal components (Ci), can be
generated that are linear combinations of observations of original

variables as follows:
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= + +oeas

Cp = Py 1% * Py 0% * Py, m*m

. ) (7)
= + * oo

SE. bm,lxl b2,mx2 + bm,mxm

Also choose coefficients for Ci i.e. bij's so that the variance of Cl

is as large as possible. Choose the C2 coefficients so that the vari-

ance of 02 is as large as possible subject to the constraint that ob-

servations of Cl be uncorrelated with those of C2. We continue for all
Ci and impose an additional restriction that squares of coefficients in
any Ci sum to one. It turns out (Harris, 1975) that if the eigenvalues
and eigenvectors of the X'X matrix are found (since it is real,
symmetric, and positive definite), then the assumptions are fulfilled.
Also, the components of the eigenvectors normalized to length one are
the bij's.

Since the variance is just a measure of the variability for
different observations, it is reasonable to interpret Cl as that linear
combination of original variables which maximally discriminates among
our observations. These components also partition the total variance
of the original variables into m additive parts, hence, the interpreta-
tion that they "account for" a certain fraction of the total variance.
Rows (or columns) in the symmetric (X'X) matrix which are linear combi-
nations of each other will produce a zero eigenvalue and will contribute
nothing to the total variance; hence, we have another way of assessing
multicollinearity and of finding, possibly, how many true dimensions

or hypothetical latent variables there are in the particular (X'X)

matrix which is evaluated in this manner. It is this property which
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has led to recent applications in meteorology (Smith and Woolf, 1976;
Brier and Melteson, 1976). A method for calculating eigenvalues is
given by Essenwanger (1976). The procedures used in this study are
those available in the statistical analysis system (SAS) (Barr, et al.,

1976) .
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3. DATA SELECTION AND PROCESSING

a. Location

The érea for this study was chosen to provide relative homogeneity
in terrain, an adequate sample of meteorological obsexvations, and as
many thunderstorm occurrences as possible during the time digital
radar data were available. The period chosen included April through
July 1974 and 1975, 30 days in each month. Surface, upper-air and
meteorological radar data were used in the analysis. Each will be

discussed separately.

b. Surface data

Altimeter setting, wind speed, wind direction, temperature, and
dew point temperature were obtained for 97 locations as shown in Fig. 4

for five times each day: 1200, 1500, 1600, 1700, and 1800 GMT.

c. Upper—-air data

Observations of geopotential height, temperature, dew point de-
pression, wind speed, and wind direction at 1200 GMT were used for each
of four standard pressure levels: 850, 700, 500, and 300 mb6. There
were 14 upper—-air locations (Fig. 4). Both surface and upper-air data

were obtained from the USAF Environmental Technical Applications Center

at Scott AFB, IL.

d. Radar data

Radar data consisted of manually digitized radar (MDR) observations

6Only geopotential height and winds were utilized for the 300-mb
level.
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for each hour from 1630 to 0130 GMT and for 187 boxes shown within the
bold line in Fig. 5. ©Note that the centers of these boxes fall within
the general area outlined in Fig. 4 (p. 32). These data were provided by
NOAA's Techniques Development Laboratory. Radar observations are usually
taken about 30 to 35 min past each hour and transmitted in coded form

(Table 6) (Foster and Reap, 1973). Digital codes represent the maximum

Table 6. Explanation of Manually Digitized Radar (MﬁR) code

Maximum Maximum
Observed Coverage Rainfall Intensity
Code No. VIP Values In Box Rate (in./hr) Category
0 No Echoes
1 1 Any VIPl <.l Weak
2 2 £ 50% of VIP2 .1- .5 Moderate
3 2 > 50% of VIP2 .5-1.0 Moderate
4 3 < 50% of VIP3 1.0-2.0 Strong
5 3 > 50% of VIP3 1.0-2.0 Strong
6 4 < 50% of VIP3 1.0-2.0 Very Strong
and 4
7 4 > 50% of VIP3 1.0-2.0 Very Strong
and 4
8 5 or 6 < 50% or VIP3, >2.0 Intense or
4, 5, and © Extreme
9 5 or © > 50% or VIP3, >2.0 Intense or

4, 5, and 6 Extreme

lVideo Integrator Processor

intensity of reflectivities anywhere in a square area approximately 85
km on a side. These codes also take into account the general area
coverage of the echoes. Time composites for the maximum code in any
of the following groups were saved for each day: 1635-1735, 1835-1935,

1935-2235, and 2235-0135 GMT. These will be called 1700-1800 GMT,
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1900-2000 GMT, 2000~-2300 GMT and 2300-0200 GMT periods, respectively.
Radar data had to be grouped by time intervals to obtain an adequate
sample because many hours of observations were missing. There are
several reasons for the specific groupings. The first interval is to
be used as a candidate predictor. The latter three were all predictands
and were formulated from operational considerations. A 3-h interval
represents a forecast of thunderstorms wvalid within 1.5 h of an esti-
mated time of arrival for aircraft flight operations. For example, an
aircrew may obtain a weather briefing at 1830 GMT for a 5.5-h flight
with departure time estimated to be 1900 GMT and estimated arrival time
at destination of 0030 GMT. A forecast for intermittent thunderstorms
would cover the period from 2300 to 0200 GMT. This interval is reason-
able owing to operational uncertainties such as delays in departure and
landing for long flights and to uncertainties in predicting the thunder-
storm event so long in advance. The 1l-h interval at the earlier time
reflects both reduced forecast and operational uncertainties because of
the short forecast lead time and brief flying time. For example, a crew
for a 1-h flight may get a weather briefing at 1800 GMT for estimated
arrival at 1930 GMT. The forecast would then cover the period from

1900 to 2000 GMT, Finally, an attempt was made to avoid overlapping

intervals so that forecasts for the different times could be compared.

e. Initial processing

Raw data were available on magnetic tapes. Programs were written
to (1) select specific observed elements, times, and stations; (2) ensure
all missing hours and days were accounted for; (3) check for gross

errors in reported values; and (4) write all data onto a direct access
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storage device. Observations that were either missing or which con-
tained numbers outside the range of what would be considered reportable
values for that variable were filled with zeros and ignored in subse-
quent processing. Many observations were checked against archived

teletype data to ensure accuracy.

£. Objective analysis

The results of this research were dependent upon the representative-
ness of raw data interpolated or analyzed onto an equally-spaced grid
system. Therefore, considerable care was taken in choosing an analysis
procedure and grid. An 18 x 18 array of grid points spaced 65 km
apart was chosen to preserve as much detail in the surface and radar
data fields as possible. Boundary points were used only for the calcu-
lation of derivatives so that only 256 points (16 x 16) were used for
statistical correlations. An analysis scheme by Barnes (1964) was
selected, not only because results obtained were very similar to hand
analysis, but also because scales of atmospheric features retained by
this technique could be determined, and the program was efficient. Scan
radii and initialization procedures were adjusted to produce an optimum
balance among the following: (1) cost, since we had 12,480 total
analyses to perform7; (2) missing data; (3) amplification of spurious
waves; (4) small-scale surface features; (5) radar grid transposition;

and (6) duplication of manual analyses. The optimum choice for scan

7240 days x (5 surface variables x 5 times + 5 upper-air variables
X 3 levels + 3 upper-air variables x 1 level + 1 radar variable x 9
times).
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radius, number of iterations, and characteristic wave lengths preserved

as a result of these choices are summarized in Table 7.

Wind was con-

verted to components with respect to grid orientation (nearly latitude-

longitude aligned). These and all other basic variables were analyzed

onto the 18 x 18 grid array for each time and day.

From these data the

predictand and candidate predictors were computed at each grid point

as discussed in the next Section.

Table 7. Summary of analysis parameters.

Data Average data Scan Iterations Initialization Wavelength of Wavelength of
Source Spacing Radius 90% amplitude 50% amplitude
Preservation Preservation

Surface 120 km 275 km 3 Mean value of 450 km 300 km
parameter

Upper air 370 km 520 km 3 Mean value of 900 km 600 km
parameter

Radar 83 km 84 km 1 0o * .

*
With one iteration this was essentially an interpolation of the nearest MDR observation to

each grid point.
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4, PARAMETERIZATION AND DATA SUBDIVISION

This section includes the formulation of predictands and the
development of predictors in the context of parameterization of synop-
tic observations. Also discussed is the subdivision of the total data

set into subsets for statistical processing.

a. Predictand formulation

Coded MDR data from the 65-km grid and three time groups, 1900-2000
GMT, 2000-2300 GMT, and 2300-0200 GMT, were converted to a simple binary
form. Any MDR code equal to or greater than four at any of the four
nearest neighbor grid points as shown in Fig. 6 was assumed to repre-
sent the occurrence of a thunderstorm (Mogil, 1974), and was assigned
the binary code one; otherwise code zero was assigned. The data void
areas in this figure result from the use of every fourth grid point for
the statistical analyses. A zero could only be assigned if the grid
point in question and the nearest neighbors were all reporting MDR
codes less than four. The best resolution in the predictand area is
limited to a square area about 138 km on a side. This was the smallest
area for which unique information from the original radar grid (83 km
square) was available. We have not distinguished among precipitation

intensities (or thunderstorm severities) in this study.

b. Predictor formulation

One approach now tempting many investigators because of expanded
computer capabilities is to use every imaginable parameter as a candi-
date predictor. For just the basic analyzed variables (temperature,

wind components, pressure, etc.) along with their first and second time
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and space derivatives, there would be well over 100 candidates, many
of which would be interrelated. Selection techniques for such a large
number, not even counting produéts or time changes of space derivatives
and vice versa; would be expensive and, more important, results would
be extremely difficult to interpret. In this study all predictors have
been chosen through parameterization techniques for categories of vari-
ables known to be associated with thunderstorms.

It is generally recognized that there are three synoptic—scale8
conditions for thunderstorms: moisture, potential instability, and a
trigger mechanism. Therefore, parameters to represent these ingredients
were calculated from centered finite differences for which the distance
interval was twice the grid distance or 130 km. In addition, a nine-
point Laplacian routine for §2A was used, where A is any scalar. All
parameters, along with their definition and source, are shown in
Table 8. Each group will be discussed separately.

1) Moisture

The first set of moisture variables includes the equivalent
potential temperature (Oe) at several levels in the atmosphere, its
time change, gradient magnitude, and advection. This parameter has
been used for many years as a means of identifying air samples owing
to its conservative properties for both dry and saturated adiabatic
processes. It has been used recently in conjunction with the location
of the thunderstorm updraft (see, for example, Ellrod and Marwitz, 1976;

Fankhauser, 1974; Brandes, 1977). High values of Oe represent a

8The data network restricts the horizontal scales to 300 to 1500 km.
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Table 8.

Candidate predictors

Moisture Parameters

fa)

Symbol Definition Source Time
ee Olexp (st/cp'r) 1 Surface 1800
Oe same except 850 mb values Upper air 1200

8
Oe same except 700 mb values Upper air 1200
7 .
Oe - 1500
3t @e(1800 GMT) @e(lSOO GMT) Surface 1800
- 2
9°6 1200
3—1:7@- [—g—gﬁ (6, (1500 GMT)-O_(1200 GMT))] Surface [1500]
30e, 2 90 1800
|$Oe| \J(—e-) + (8 e) Surface 1800
)
OeA —(ugie + v—ee) Surface 1800
T—Td T--Td Surface 1800

(T-Td)8 same except 850 mb values Upper air 1200
(T—Td)7 same except 500 mb values Upper air 1200
W 0.622¢/P-e Surface 1800

_ (6.11)107.5(Td—273.18)/Td-35.86
P = -1013.25 + 1013.25/(1.0-a(z))°
+ALTSTG, where a(z) = .0065z/288.0,
b = 5.240
W8 same except for 850 mb Upper air 1200
W7 same except for 700 mb Upper air 1200
I6W| Q(BW 24 (EESZ Surface 1800
2
2 3 W W
+
ﬁ W 2 557 Surface 1800
->
MDIV v-WV Surface 1800
W oW 2
IDI _3_@ __8_\1) oW Bu BW BV 2 1800

3% 3y | 3y By ‘ax = T ay 3%  Surface
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Table 8.

Candidate predictors (Continued)

(b) Stability

Symbol Definition Source Time
DTA ( $-$ ™) , - (6-6 T Upper air 1200
plg p )5 PP

CSIL - i
e Oeg Upper air 1200
CSIM Ges - Oeg Upper air 1200
KI T8 + Td8 —(T—Td)7 - T5 Upper air 1200
TTI 2(T8 - T5)—(T - Td)8 Upper air 1200
RT7 .
STSI . -0 Upper air 1200
©@ P e e
ey 7 5 8
UWSH Uz - Ug Upper air 1200
DTH (Z8—Z7)/150 —(Z7—25)/200 Upper air 1200
2 >
VszHA % p(—V7-_V)(DTH)) Upper air 1200
T Temperature Surface 1800
0 7 (2000/2) ¥ Cp Surface 1800
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Table 8.

{e) Trigger

DVA

IDIV

IMDIV

Candidate predictors (Concluded)

Definition Source Time
+
(—V-ﬁz)gp + (6-{;)50 Surface 1800
2 2
g—;g— + g—y—g— Surface 1800
i‘i - i"—‘- Surface 1800
ox oy
>
(—v-?pz;)s-(-%*-'v’pc)s Upper air 1200
> > >
2.25(V V) + 1.75(V_-V)_ + 1.0(V_-V Upper air 1200
( b )8 ( o )7 p ) PP
> > > .
(?-WV)8 + (’V’P-w%>7 + (VP.W)5 + (Vp-WV)3 Upper air 1200
2 2 .
ug + Ve Upper air 1200
500 mb N-S wind component Upper air 1200
v5 + Vg Upper air 1200
\l(g—P‘)z + (gl'?')2 Surface 1800
ox oy
u_Q_Pf_ + v§£ Surface 1800
ox oy
V4P (1800 GMT) - V2P (1500 GMT) Surface {1288}
1700
MDR code > 1 at 1700 or 1800 GMT Radar {1800}
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potential, latent energy source (warm moist air) for the convective
process.

Next, basic measures of low-level relative humidity are included.
These are expressed as dew point depressions. The last group of mois-
ture parameters are basic measures of atmospheric water vapor content.
The mixing ratio has been combined with the divergence field of surface
wind in ﬁ-w% so that moisture advection and convergence are included
in a single term. This has been a leading predictor in other studies
(Charba, 1977; Alaka et al., 1973; Henz, 1974) . The Laplacian of mixing
ratio identifies centers of high moisture (negative Laplacian). A
term which combines both the deformation field of the wind and surface
moisture pattern has been introduced in IDl. This is similar in form
to the frontogenetic function of Petterssen (1956, p. 201) with O re-
placed by W and is discussed in Palmén and Newton (1969, p. 246). It
is a way of locating where shear and confluence of surface wind could
concentrate moisture. Fig. 7 shows schematically how this might be
accomplished. Prime quantities represent isolines after a time incre-
ment At. The lines of W' in Fig. 7a have been shifted to the left for

convenience. Consider the magnitude of %W. As %ﬁ-decreases, lﬁwl in-

creases. Similarly, as %%

decreases, l3W| increases.

2) Stability

There are numerous ways of estimating atmospheric static stability.
Differential temperature advection where cold air is advected over warm
air or vice versa is a way of incorporating kinematics (wind-structure)

and time. So long as the advection is constant with cold advection

above warm advection, the atmosphere will respond by decreasing stability
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and (b) confluence.

45



with time. Similarly, the horizontal temperature gradient is related
to the vertical wind shear and differential teﬁperature advection will
be reflected in adjustment of the thickness field. Both wind shear
and. thickness differences have been included. The Laplacian of thick-
ness advection should be a way of locating centers of strong differential
temperature changes which, in a subsequent time interval, could be
related to thunderstorm development. Convective instability is impor-
tant to thunderstorm development (Koch, 1975). This type exists in the
atmosphere in those layers where Oe decreases with height. There are
three parameters in which a finite difference version of this term are
included. The last of these is static stability discussed by Paine
and Kaplan (1974). Finally, standard parcel stability measures and
surface values of temperature and potential temperature were used.

3) Trigger mechanism

Many days occur when sufficient moisture and instability are both
present and yet there are no thunderstorms. A trigger mechanism is
needed to release the instability and latent energy. Usually, this
trigger is manifested in vertical motion, so that we need to find a
lifting mechanism., Terrain-induced vertical motion is included as a
predictor combined with surface velocity divergence. The vorticity
field at the surface measured by the vertical component of the curl of
the surface wind field or indirectly through the pressure Laplacian is
another potential uplift mechanism through convergence which it induces.
Fronts are frequently associated with thunderstorms. A front can be
identified through the wind, temperature, moisture, and pressure

fields. Temperature, moisture, pressure gradients and the advections
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of Oe and P were included as parameters. Measures of vertical motion
can be obtained in only a crude way from data at just five levels in
the atmosphere. Both integrated divergence (sums of divergence for
three levels) and integrated moisture divergence were included as
predictor parameters. Differential vorticity advection (DVA) is in-
cluded as a parameter since it together with the Laplacian of thickness
advection, are the two terms in the w-eguation (Holton, 1972). The
meridional Qind component at 500 mb is a measure of the strength and/or
proximity of an approaching trough if a general west to east wave
motion exists. Vorticity advection and vertical motion usually ensue.
The v-component sum at 850 and 500 mb‘measures the degree to which the
wind is in-phase at these two levels east of a trough. The more out-of-
phase, the lower this sum would be; therefore, one would be looking at
a measure of the baroclinity of the lower atmosphere. A negative cor-
relation of this parameter measured at 1200 GMT with thunderstorms
later in the day would be expected. Finally, an increased tendency for
cyclogenesis at the surface may be associéted with general uplift and,
therefore, a trigger mechanism for subsequent thunderstorms. The time
change of the Laplacian of the surface pressure, %E (§2p), is one
such indicator.

The last trigger shown in Table 8 is a binary radar parameter. Any
MDR code (two or greater) during the time period 1700 to 1800 GMT for
each grid point was coded as one; otherwise, zero was assigned. In this
way a one represents any precipitation occurring near the time the fore-
cast is to be made. Usually, when other conditions are right, any pre-

cipitation at this time of the morning either maintains its intensity
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by propagating within the predictand area when the cpde is already
greater than four, or develops into a thunderstorm in the subsequent

2 to 5 h. This predictor is thé only direct measure of vertical motion
or trigger among all predictor parameters. Of course, some of tﬁe para-
meters could contribute to more than one condition for thunderstorms.
Consider, for example, the discontinuity functibn, ID} ; while listed
under moisture, it might also be discussed in conjunction with the dry
line and frontogenesis or a trigger term. Similarly, the Laplacian

of thickness advection is a term in both the w-equation and Petterssen's
development of surface vorticity tendency. It could be shown with the

trigger terms as well.

c. Subdivision of original data

The total data set consists of parameters calculated at each of
256 grid points for 240 days. However, for reasons discussed in Section
3, not every grid-point was used. There were a total of 7680 observa-
tions possible in the data set used for subsequent statistical analysis.
However, an observation which contained any missing element was not
used. The data were then subdivided into groups as shown in Fig. 8.

1) Developmental and test

Subdivision of the original data sét into developmental and test
groups was necessary so that some type of quality measure or verifica-
tion could be obtained. Every third day is considered to be independent
for temperature (Panofsky and Briexr, 1958). Therefore, data in every
third day (day one, day four, day seven, ...) were used as a test sample.
The developmental sample included data in all other days. As far as

thunderstorms were concerned, the assumption of independence was
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TOTAL

n=7680

NORTH SOUTH RANDOM

WIND WIND

2570 5110 2311

INDEPENDENT DEPENDENT
2880 4800
NORTH| SOUTH RANDOM RANDOM APRIL JULyY NORTH SOUTH
WIND WIND WIND WIND
937 1943 903 1462 1920 1920 1633 3167
Fig. 8. Subdivision of total data set.
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examined for a few grid points in the test sample. Ones were not ob-
served for two consecutive periods (day one and day four, for example).'
The developmental sample was, therefore, considered to bg the dependent
sample; the test data set was the independent sample. Equations were
developed from statistical models applied to the developmental sample
and tested on the test sample.

2) North wind and south wind

Thunderstorms are observed to develop and behave somewhat different-
ly in different types of synoptic situations or in different air masses
(Purdom, 1975). Subdivision by air mass may give better results in this
type of statistical analysis where the sample includes several thunder-
storm seasons for a large area. Partitioning by air mass was not
directly possible with the historical data available. However, a
division of data by surface wind component at 1800 GMT was considered
to be a fair substitute. Consequently, the data were divided into
north wind and south wind sets depending on whether or not the surface
wind had a northerly or southerly component at 1800 GMT, respectively.
Separate regression analyses were performed on each subset.

3) April and July

All days and observation points in April for the two years of data
were combined. The same was done for July. Again, analyses were per-
formed within each data set to determine differences, if any, in spring
and summer predictors.

4) Random sample

Samples were chosen by random-number generators. so that develop-

mental samples contained nearly the same number of occurrences and

50



nonoccurrences. The unequal natural fregquencies of thunderstorms

versus no thunderstorms create problems in reéression analysis when the
dependent variable is binary. These problems were discussed in Section
2. Results of application of the various statistical techniques outlined

in Section 2 to subsets discussed here are presented next.
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5. RESULTS

First, comparisons of results for different predictand times will
be presented. .The types of predictors selected and the order in which
they were included in the model will be discussed next for all data
subdivisions. Following this will be the importance of surface versus
upper-air parameters to the prediction of thunderstorms. A discussion
of the maximum R2 or variance reduction achieved will follow. Next,
performance of the equations applied to an independent data set will
be presented followed by comparisons with results of other investigators.
Results of a principal component analysis will be presented next.

Last will be a discussion of the utility of these equations in an

operational environment.

a. Forecast time intervals

Regression models were tested with fixed numbers of independent
variables and three time combinations of the dependent variable: 1900-
2000 GMT, 2000-2300 GMT, and 2300-0200 GMT. Random samples were chosen
so that p was nearly the same. The R2 decreased, as expected, when
the time interval between observations and forecasts lengthened; how-
ever, the occurrence frequency of the predictand was only 9.3% in the
first period. With so few occurrences, this equation would likely

N

deteriorate9 when applied to independent data. In other words, there

9"Deteriorate" means that probabilities of thunderstorms produced
by the linear equation developed from data in a dependent or develop-
mental sample would not correspond well with observed frequencies of
occurrence when these equations are used on an independent sample of
data.
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would not have been enough different thunderstorm-producing environ-
ments included in the sample. Also, extrapolation of existing radar
echo patterns would seem to be a more promising technique for those 1-
to 2-h forecasts. Similarly, it is not likely that observed features
of the atmosphere early ig the morning would adequately reflect ingre-
dients for the occurrence of thunderstorms late in the afterncon. Con-

sequently, only the 2000-2300 GMT period was included in all further

analyses.

b. Predictor selections

The order of selection and specific predictors selected by a step-
wise, variable selection technique are shown in Table 9 for different
groups of data. Only the first six of many predictors offered as
candidates are shown. No matter how the data are divided, the three
variables consistently selected include a combination of moisture and
trigger terms; the next several invariably include a measure of atmo-
spheric instability through either stability indices or linear combi-
nations of vertical temperature and moisture parameters. The first
four-to~-five variables include all the synoptic-scale conditions for
intense convection. Therefore, it is not surprising that more than
85% of the total wvariance explained by the regression model is accounted
for by the first five variables.

In the case of the north wind and all other subsets except south
wind, the single most important predictor was the surface mixing ratio.
The presence of precipitation (MDRP) near 1800 GMT was most important
for the south wind data. In the area chosen for this study, a south

wind implies the presence of maritime tropical air which contains
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Table 9. Variables selected, cumulative R”, and sign of coefficients for a stepwise selection

procedure and different data subsets.
Ordex
Data 1 2 3 4 5 6
Tetal W 0.108 MDRP 0.181 MDIV 0.200 T-Td7 0.209 CSIL 0.216 e 0,220 -
Random 18% of W 0.185 TTI 0.234 MDRP 0,266 MDIV 0.280 T—Td7 0.288 er 0.29% =~
!no—thunderstorm
Idays
North wind W 0.166 MDRP 0,220 MDIV 0,250 T-Td 0.254 ey 0.259 T-Td 0.266 +
’ | 7
South wind MDRP 0.105 | W 0.160 MDIV 0.176 T-T 0.191 T-T 0.197 0.202 -
| dg dz ey

April W 0.121 MDRP 0.187 MDIV 0.216 Vs 0.224 IDl 0.228 T—Td7 0.232 =i
dependent ) i
July W 0.130 MDRP 0.201 MDIV 0.219 TTI 0.229 VSUM 0.239 T—Td7 0.244 -
dependent




considerable moisture. Therefore, a trigger mechanism identified by
MDRP would be an important parameter contributing to thunderstorms,
given thét moisture is already present.

For the April and July subsets the first three predictors are the
same. During April, a 500-mb trough (v-wind component at 500 mb) and
concentration of moisture gradient at the surfade through the deforma-
tion field of the wind are the next mos£ important parameters. This
latter predictor can be interpreted to represent the location of the
surface dry line which is recognized as a favored region for severe
weather (Miller, 1972). In the spring, surface winds are stronger and
gradients more intense than in summer. Therefore, one would expect
these gquantities to be reflected more in the synoptic data which are
utilized. During July stability measured by the Total-Totals Index is
the fourth predictor chosen. This development is reasonable owing to
the weaker winds in the summer,

In a separate analysis, four different time changes were computed
for five surface variables. These were the 1-h, 3-h, 6-h and 3-h change
in the 3-h time change for the following: Oe, MDIV, WTS, GeA, and
ﬁzP. When these were used as candidate predictors in the stepwise
selection procedure, they were not chosen among the top five predictors.
Also, when time derivatives were selected, the 3-h and 6-h changes were
chosen before 1-h changes. One possibility for this result is that the
original spacing of surface data and analysis procedures restricts the
amplitudes of resolvable features. Six-hour features are more likely
to have the larger amplitudes which can trigger intense convection later

in the afternoon. More work needs to be done in this area.
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The signs of regression coefficients are as expected when other
variables are included in the model. For example, the sign of the
temperature coefficient is interpreted as the change in predictand for
a unit change in temperature while holding constant all other variables
in the model at that time. The negative sign indicates that given
that surface moisture (among other things) already is present, then
thunderstorms occur with lower temperatures or when the air is more
nearly saturated. The total correlation coefficient for temperature
shown in Table 10 indicates a positive correlation of temperature and

thunderstorms when all other variables are ignored.

c. Importance of surface versus upper-air parameters

Regression models were utilized with stepwise procedures for sur-
face variables and upper-air variables separately. Results are
summarized in Table 11. Surface parameters alone in linear combination
accounted for 15% of the total variance (R2 = 0.150), whereas upper-air
parameters accounted for ohly 13.4%. When both sets were used to-
gether, however, the best results were obtained; R2 improved to 0.197.
Both timeliness and spatial resolution contributed to this result.
Surface data were available at 1800 GMT, 2-5 h before thunderstorm
occurrence as opposed to upper-air observations at 1200 GMT. Also,
surface stations are spaced about 120 km apart compared to 370 km for
upper-air reports. Space derivatives, which are used extensively as
parameters, are, therefore, more nearly represented by finite differ-
ences in the case of the former. Even though the upper-air predictors
were old and contained poor spatial resolution, when combined with sur-

. . . 2
face predictors, they produced a 30% improvement in R . It appears
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Table 10. Linear correlation coefficients of selected predictors
with the occurrence of thunderstorms during the
period 2000-2300 GMT.

Predictor Time of Correlation Significance
. Observation (GMT) Coefficient Probability level

6, 1800 0.280 0.0001
Wpg 1800 -0.154 0.0001
MDIV 1800 0.173 0.0001
oA 1800 0.103 0.0001
LP 1800 - 0.079 0.0001
z 1800 0.099 0.0001
ID| 1800 0.050 0.0001
| % 1800 0.041 0.0006
72w 1800 -0.082 0.0001
csIM 1200 ~0.275 0.0001
CSIL 1200 -0.230 0.0001
KI 1200 0.289 0.0001
TTI 1200 0.251 0.0001
STSI 1200 -0.274 0.0001
UWSH 1200 -0.130 0.0001
DVA 1200 0.008 0.5173
LTHA 1200 0.052 0.0001
DTA 1200 0.051 0.0001
IDIV 1200 -0.040 0.0008
IMDIV 1200 -0.041 0.0006
v, 1200 -0.128 0.0001
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Table 10. (Concluded)

Predictor Time of Correlation Significance
Observation (GMT) Coefficient Probability level
DTH 1200 -0.016 0.0001
C] 1200 0.283 0.0001
€g
S} 1200 0.220 0.0001
€7
W8 1200 0.311 0.0001
W7 1200 0.233 0.0001
(T-Td)7 1200 -0.174 0.0001
(T—Td)8 1200 -0.213 0.0001
V5 1200 0.090 0.0001
| 1800 0.328 0.0001
VSUM 1200 0.113 0.0001
u 1800 -0.043 0.0001
v 1800 0.050 0.0001
T 1800 0.166 0.0001
T—Td 1800 -0.190 0.0001
MDRP 1735 0.324 0.0001
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Table 11. Summary of statistics for regression analyses with
surface and upper-air predictors.

Total Occurrence Data Max R2 Number Mean
Sample Frequency of Squared
Size Predictors Error
7492 17.9 Surface 0.150 11 0.125
7492 17.9 Upper air 0.134 16 0.128
7492 17.9 Surface and 0.197 24 0.118
upper air
7125 17.9 Upper air, 0.243 20 0.114
surface and
MDRP

that poor as they are, these predictors fill an important gap in iden-
tifying those observed features of the atmosphere which are subsequently
related to intense convection. Surface data alone give little indica-
tion of the potential stability of the atmosphere. It is this ingre-
dient which is added by including upper-air paraweters. The dew-point
depression at the 700-mb level is the first upper-air predictor included
by the stepwise procedure. Also, it is the third parameter following
low-level moisture and moisture divergence. Stability alone, however,
gives inadequate information for predicting subsequent thunderstorms.
From Table 10 (p. 57) it is seen that the highest correlation coefficient
between the predictand and any single stability measure is 0.289 for the
K index. Several other variables such as W, the radar predictor (MDRP),
and equivalent potential temperature differences exhibit higher cor-

relations.
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d. Quality of fit of the regression model

While the conditions for thunderstorms are known with some con-
fidence as far as synoptic data are concerned, there is little confi-~
dence in determining these conditions from the study data. For example,
stability can be obtained from the vertical structure of temperature
and moisture profiles. When a limited sample of these data at a few
fixed levels in the troposphere comprise our measures, only approxi-
mations to the stability can be made. There is a number of these
approximations depending on levels, variable combinations, and physical
assumptions (parcel method, layer method, etc.). Similarly, the trigger
mechanism must be inferred since vertical motion, the usual trigger, is
not one of the observed variables. Finally, the parameters contributing
to many thunderstorm occurrences exist on a scale much smaller than we
can resolve with our data. Thunderstorms have been observed to occur
at boundaries and intersections of pressure discontinuities (gust fronts)
caused by previous cells (Purdom, 1974). Similarly, they have been ob-
served to develop in the afternoon in areas which were void of clouds
that morning (Weiss and Purdom, 1974). The influence of the sea breeze
is illustrated by the frequency distribution of thunderstorms along the
Gulf Coast and Florida (Scoggins, 1976). Small-scale convergence in-
duced by gravity waves (Wave CISK) appears to be important to intense
convection from theoretical considerations as well (Raymond, 1976).

Even diffusion in a two-constituent medium might be a trigger (Schaefer,
1975). A consequence of the foregoing discussion is reflected in the
overall low R2 or relatively small amount of variance of thunderstorm

occurrences that can be explained by the linear combination of synoptic
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parameters.
X . 2 ‘e
Table 12 contains the maximum R~ for a specific number of predictors
in each data subset. The regression for the random sample of no-thunder-

storm observations produced the highest Rg, 0.332, most likely because

Table 12. Summary of statistics for regression analyses with
different data subsets.

Total Occurrence Data Max R2 Number Mean
Sample Frequency of Squared
Size (%) Predictors Exror
7125 17.9 Total 0.243 20 0.114
2203 40.7 Random 18% 0.332 18 0.163
of no TSTM
days
2376 13.9 North wind 0.284 13 0.086
4750 20.6 South wind 0.238 21 0.125
1837 8.1 April 0.255 14 0.056
dependent
1759 25.4 July 0.279 16 0.138
dependent

the total number of observations decreased. The equation for predicting
thunderstorms which developed between 2000 and 2300 GMT following sur-
face wind with a northerly component at 1800 GMT accounted fpr 28.4% of
the total variance, whereas the south wind equation accountéd for 23.8%
though some of this difference would be due to the larger occurrence
frequency in the south wind data. Further, the north wind equation did
its job with a fewer number of predictors.

The R2 for the April and July data are based on fewer observations,
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but it is interesting to note that the R2 for April (0.255) is lower
than that for July (0.279) even though the frequency of thunderstorm
occurrence is much higher in July.

The mean squared error (MSE) of the regression analyses continued
to be reduced as more variables were added to the model. This indicates
that the exact synoptic-scale measures of the conditions for thunder-
storms were not available, or the parameters did not truly represent
these conditions. This result is not surprising if one considers
the crudeness of our measures of atmospheric structure in terms of
limited horizontal and vertical resolution, the untimeliness of the
upper—-air measurements (8-11 h before thunderstorm occurrence), and
limitations imposed by the specific observed variables from which para-
meters were computed.

Another way to evaluate quality is to consider how well predicted
probabilities represent actual frequencies of occurrence of thunder-
storms. Predicted probabilities in 10% increments were generated for
several different data subdivisions. These are shown in Fig. 9. 1In
general there was a slight tendency to overpredict the observed prob-
ability at low probabilities and underpredict for probabilities above
0.6. This seems to be consistent with our natural bias in subjectively-
derived probabilities. Underprediction at high frequencies of occur-
rence can be explained by the decreased slope of the regression plane
owing to the many more non-occurrence observations compared to thunder-
storm occurrences (see paragraph e). No explanation, however, is

apparent for the overprediction.
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e. Performance on a test data sample

A further measure of the quality or goodness of the regression
models is hoﬁ well. the equations perform on an independent data sample.
Equations developed from a dependent sample were applied to independent
data. Furthermore, a threshold of predicted probability was chosen and
a contingency table of counts for predicted and observed yes and no

cases developed as follows:

Forecast

(0]
b Yes No Sum
s

Yes
e A B Sl
r No C D s
v 2
e Sum S
3 3 Sg | T

From such a table some typical discriminates can be examined such as the
overall percent correct, (A+D)/T)100; the percent of correctly forecast
observations of an occurrence, called prefigurance, (A/Sl)lOO; the per-
cent of correctly observed forecasts of occurrence (postagreement),
(A/S3)lOO; Threat Score, A/A+B+C (Charba, 1977) called critical success
index by Donaldson et al., (1975); skill score [(A+D) - S3Sl + S482)/T]/
[T - SSSl + S452)/T], discussed by Brier and Allen (1952); and V-score,
Vv = (AD - BC)/(A+B) (C+D), presented by Dobryshman (1972) and discussed
by Woodcock (1976). The threat score, skill score, or percent correct
cannot be interpreted to measure relative merits of each subdivision of
the original data because each is a function of the observed probability
of occurrence (called trial conditions by Woodcock (1976)). These

probabilities change as the threshold of predicted probabilities for

classification purposes changes. Table 13 contains example contingency
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Contingency tables for 25 no-thunderstorm forecasts shifted
to the yes forecast column in different observed proportions.

Threat score and skill score are also shown.

Table 13.

(a) Original proportion (b) 10% proportion (c) 15% proportion
(20% forecast yes) (3 yes; 22 no) (4 ves; 21 no)
Forecast
(0]
b Yes No Yes No Yes No
s
e
r Yes | 67 55 Yes 70 52 Yes 71 51
v
e
d No 108 656 No 130 |634 No 129 635
TS = 0.291 TS = 0.280 TS = 0.282
SS = 0.340 Ss = 0.318 SS = 0.326
(d) 20% proportion (e) 30% proportion (£) 49% proportion
(5 yes; 20 no) (8 yes; 17 no) (12 yes; 13 no)
Yes No Yes No. Yes No
Yes | 72 50 Yes| 175 47 Yes| 79 43
No 128 636 No 125 639 No 121 643
TS = 0.288 TS = 0.304 TS = 0.320
SS = 0.330 SS = 0.356 Ss = 0.386
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tables where a fixed number of no-thunderstorm forecasts (in this case
25) are shifted to the yes column for different proportions of observed
ves and no cases. This is exactly what is done when the threshold
probability is lowerea. One can see that the threat score (TS) or
skill score (SS) exceeds the original values only after the proportion
within the observed categories exceeds the original forecast probabili-
ty. They appear to be unsuitable for a goodness measure. The overall
percent correct also is not very meaningful because of the many days
when no thunderstorms occur. The V-score is least affected by trial
conditions but also involves the No-No entry. Therefore, our discussions
will focus primarily on the prefigurance and postagreement percentages.
Table 14 contains the above discriminates for each data subdivision.

One can obtain an indication of the deterioration of the equations
by looking at the decrease in any of the discriminates but, in partic-
ular, the V-score between the developmental and test samples. For
example, the mean V-score for the total developmental sample is 0.454.
The mean for the total test sample is 0.390. The lower score means
poorer performance.

Thunderstorms appear to be more predictable from synoptic para-
meters when the surface wind has a northerly component at 1800 GMT.
Such an implication is indicated by the greater V-score, prefigurance,
and postagreement percentages for the north wind equation when tested
on the independent sample compared to similar statistics for either the
total equation or that for the south wind subdivision. There are
several explanations. First, thunderstorms frequently develop behind

a shallow surface cold front (north wind component) in the area of
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Table 14. Summary of contingency tables.
Observed Forecast Threshold Prefigurance (%) Postagreement (%) Percent Skill Threat V score Sample to
Frequency (%) Frequency (%) Correct Score Score which applied
Total Sample
19.4 31.4 .22 65 40 74 .337 .329 .417 Test
19.4 25,7 .25 59 44 78 .362 .335 .407 Test
19.4 20.2 .28 51 49 80 .379 .335 .385 Test
13.4 17.1 .30 45 51 81 . 350 .316 .350 Test
17.0 26.8 .25 69 44 80 .418  .369 .513 Developmental
17.0 18.1 .30 54 51 a3 427 .358 .438 Developmental
17.0 15.5 .32 50 54 84 .426 .351 .411 Developmental
Random Sample
60.4 62.4 .46 78 80 74 .455 .652 .451 Random test
59.5 56.7 .50 57 48 75 .474 .638 .500 Random test
57.1 63.2 .50 85 77 76 .509 .672 .500 Random
developmental
19.4 51.9 .42 84 31 61 .243 .295 .399 Test
19.4 40,2 .50 76 37 70 .316 .329 .445 Test
19.4 20.8 .65 52 48 80 .381 .337 .392 Test
North Wind
13.8 23,2 .25 66 39 81 .381 .323 .491 Test
13.8 20.5 .28 64 43 83 .417 .345 .503 Test
13.8 18.5 .30 59 44 84 .410 .336 .470 Test
13.8 14.1 .34 47 46 85 .374 .300 .378 Test
13.8 11.3 .37 39 47 85 .339 .267 .314 Test
13.5 22.3 .25 74 45 84 .466 .385 .596 Developmental
13.5 17.5 .30 65 59 87 .494 .399 .556 Developnental
13.5 13.8 .34 59 57 89 .513 .408 .518 Developmental
13.5 12,2 .37 52 58 88 .483 .379 .464 Developmental
South Wind
22.0 26.3 .25 57 48 77 .372 .354 .399 Test
22.0 23.0 .27 54 52 79 .389 .357 .396 Test
22.0 17.0 .30 45 58 81 .385 .336 .354 Test
19.0 29.8 .25 69 44 77 .398 .366 .486 Developmental
15.0 25.6 .27 63 47 79 .409 .367 .464 Developmental
19.0 20.6 .30 56 51 82 .423 .367 .438 Developmental
19.0 16.1 .33 47 55 83 404 .340 .382 Developmental




this study. In these situations the storms are usually connected with
a synoptic~scale vertical motion field that results from positive
vorticity advection due to a short-wave trough aloft, given that
moisture and pofential instability exist. Storms also can develop
along a surface cold front which trails an active squall line. In
these cases as well, the surface winds behind a southeastward moving
squall line are likely to have a northerly component 2-5 h before the
occurrence of the cold-front cells. Finally, we can distinguish between
thunderstoxrms in continental air masses where surface winds are from
the North and maritime air masses with southerly winds. Thunderstorms
occurring in the maritime air are more frequently classified as con-
vective, air-mass thunderstorms (Beers, 1945). The trigger mechanism
for releasing the instability usually present is less detectable from
synoptic data. Mesoscale or even smaller discontinuities may exist and
contribute to the trigger. These elude detection from the data in

this study.

When applied to a random dependent sample (in other words how well
can the linear function discriminate between thunderstorms and no
thunderstorms within the dependent sample which only includes 17% of
all no observations ), the equation produced prefigurance and post-
agreement percentages of 85 and 77, respectively, although the overall
percent correct was down to 76 (Table 14, p. 67). The deterioration when
applied to a random independent sample was not large. For a threshold
of 0.46, 78 and 80% were obtained for the prefigurance and postagreement,
respectively. When the equation developed from the random dependent

sample (17% of no-thunderstorm observations) was applied to the total
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independent sample (as opposed to the random independent sample),
the prefigurance—postagreemeht percentages were not as high.

It is not clear why the equation from the random dependent sample
deteriorates so little when applied to the independent sample. One
possible explanation could be due to the binary nature of the dependent
variable and unequal distributions of occurrences and nonoccurrences.

Figure 10 shows how the influence of the nonoccurence observations.

=
Q 1~ © DATA FROM TABLE 3 a7
[ —— REGRESSION LINE yd
g (TABLE 3)
— X DATA FROM TABLE 4 p
5 -~—— REGRESSION LINE
Q (TABLE 4)
z
Ll
[N
L
(o
/
3
0 L xgﬁ 2 o— 1
0 [ 32 3 4 5

INDEPENDENT VARIABLE (Xx)

Fig. 10. Regression lines for data in Tables 3 and 4.

actually decreases the slope of the least squares estimate of a regres-
sion line. By eliminating the no's so that the proportions are more
nearly eqgual, the slope is increased. This increase can be visualized

as an increase in the discriminating ability of the independent
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variables. As the slope of the regression line increases, a small

change in x would produce a large change in the predicted probability

(Y) if the linear function were to be used in a prédictive fashion.
Several attempts were made to accomplish the same result by using

critical values of predictors. These values were selected from frequency

distributions of the predictand and leading predictors. One such fre-

quency distribution is shown in Fig. 11. There a cut-off would be

5g¢g kg_l for the surface mixing ratio. Others were chosen similarly

and used in conjunction (logical and) and disjunction (logical or)

operations. An example of the latter would be as follows: If

_l -—
W <5 gkg or @e < 317 Kor KI < -8 or W, < 5 g kg l, then delete this

8
observation (hopefully it will be a no-thunderstorm observation). In fact,
the above statement provided the best results which could be obtained.

. 2
Frequency of occurrence was increased only 7% and R changed from 0.260

to 0.247 for a stepwise procedure,

£. Comparison with other results

Except for the work of Charba (1977) there are no other results
which are directly comparable. Charba has published his results for a
similar statistical technique (step up) and for 2- to 6-h forecasts
of thunderstorms (defined similarly from MDR data). His research area
includes most of the eastern United States, and predictand area is
about 80 km on a side. However, Charba used combinations of radar
observations at 1735 GMT, radar climatology, surface observations at
1500 GMT, and upper-air forecasts valid at 2100 GMT from a limited-

area, fine-mesh model (Howcroft and Desmarais, 1971) as predictors.
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If we exclude radar predictors, his top four were (1) a modifiedlo K
index, (2) moisture divergence at the surface, (3) modified Total-
Totals Index, and (4) 500-mb wind speed. These compare favorably with

the moisture, divergence, and stability parameters from observations

in this study. The observed frequency of thunderstorms in Charba's
work was 10% compared to 17% here. One should see an increased R2

from this influence in Charba's result counteracted to some extent bf a
reduction in R2 due to the smaller forecast area. The net result was
an R2 of 0,282 in Charba's scheme compared to 0.284 in the case of our
north-wind equation. In addition, Charba's predicted probabilities
were similar overall to those in this research.

Some knowledge is required of how forecasters subjectively predict
thunderstorms in an operational environment. Unfortunately, there are
no statistics which would exactly correspond to the areas, times, and
procedures used here. In fact, any verifications of thunderstorm fore-
casts with different lead times are difficult to find. One set of
data was available for 14 base weather stations in or near the area of
Fig. 4 (p. 32) during the June, July, and August 1976 period. These data
consist of warnings issued by forecasters of impending thunderstorms.
The number issued and the number verified with a lead time is summarized

in Table 15. Thunderstorms which occur less than 1 h from the forecast

10 e . .
Modified in this context means that surface observations of

temperature and dew point at 1800 GMT were averaged with a forecast
temperature and dew point at 850 mb.
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Table 15. Contingency table of observed and forecast
thunderstorms for 14 base weather stations
near the area outlined in Fig. 4.

Forecast
Yes No
-0

b
: Yes 78 90 46.4%
: e
v
e
a No 167

31.8%

time are counted as misses. For example, a warning for thunderstorms
issued at 1700 GMT valid for the period 1900 to 2300 GMT would be a

hit if a thunderstorm were observed at the station or within the base
environment after 1900 GMT. Otherwise, it would be a miss. The base
environment is usually about a 10-km radius of the station but may vary
up to 45 km. This is still considerably smaller than the forecast

area of a square 138 km on a side used in this sﬁudy and, therefore,
should reflect poorer performance. On the other hand, a 1l-h lead time
is allowed for verifying the weather warnings, whereas the lead time is
2 h for the statistics in Appendix B. This may compensate to some ex-
tent for the smaller area. Many other differences exist between these
statistics and those presented in Appendix B so that comparisons are
difficult. The very definition of thunderstorms is different. An MDR

code of four or greater was used in this research. The weather station
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used their observation log or the radar in a qualitative sense.. Also,
the issue time from the weather station was not constrained to 1800 GMT.
Finally, the peripd for the base weather station included a year, 1976,
and month, August, tﬁat were not available in this study. Nevertheless,
the low prefigprance and postagreement percentages of 46% and 32%,
respectively, seem to be typical of a forecaster's performance at this
difficult task.

Though there is little confidence in comparisons of verification
measures applied to data of this nature, there are a combination of en-
couraging signs which lead to a conclusion that observations of key
parameters in linear combination can provide useful forecasts of thun-
derstorms in areas of about 8350 km2 for periods of 2- to 5-h. First,
parameters selected by statistical methods provide the ingredients for
subsequent thunderstorms which have been deduced from many years of
experience. Secondly, the equations do not deteriorate when applied to
independent samples. ‘Further, contingency tables produced from equations
for many different threshold probabilities provided higher prefigurance
and postagreement percentages than those from a table of actual perfor-
mance. Also, predicted probabilities from the equations represent
actual occurrence frequencies. Finally, these results are very similar
to those from an operational program where forecast model predictors had
been used. Results of a principal component analysis are discussed

next.

g. Dimensionality

As stated earlier, eigenvectors of the independent-variable matrix
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that consist of sums of squares and cross products, (X'X), can be
interpreted to represent the part of the total variance accounted for
by the given linear combination of variables where the eigenvector
elements are the weights or coefficients. If it turns out that the
first few components account for some large pércentage of the total
variance as shown by the cumulative portion of the eigenvalues, then
it can be assumed that there is evidence of the true dimensionality of
the original set of variables or that there is an indication of the
total number of hypothetical, latent variables needed to describe the
structure of the original variables. This is another way of quantifying
the degree of intercorrelation among the x's. These eigenvectors for
different subsets of the (X'X) matrix are shown in Table 16. Also
shown are the associated eigenvalues and cumulative portion of the
total variance which is accounted for by each successive eigenvector.

In the case of moisture parameters, we can account for nearly
90% of the total variance in all moisture parameters by using the first
five components (the five largest eigenvalues). We can account for
50% of the total with just two. The variables which seem to be most
important, according to the sum of the first two eigenvector co-
efficients, are surface, 850-, and 700-mb mixing ratio, equivalent
potential temperature at the surface, and dew-point depression at 700
mb. It is not surprising that among these are the leading parameters
selected by the stepwise regression procedure.

Stability parameters have fewer dimensions as shown by the eigen-
vectors. Just one principal component accounts for 59% of the total

variance. The 90% point is reached with only four eigenvectors. Among
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Table 1l6. Eigenvectors and eigenvalues for moisture, stability and trigger parameters.
(a) Moisture Parameters (b) Stability Parameters

Eigenvectors Eigenvectors
Parameter 1 2 3 4 5 6 Parameter 1 2 3 4 5 6
Ge 0.442 0.372 0.044 0.156 0.035 0.304 CSIM -0.421 0,060 0.102 0.107 ©0.078 -
|vw} 0,080 0.259 0,585 0.400 -0.004 -0.649 CSIL - -0,337 0.097 0,337 0.513 0.150 -
V2W -0.095 =0.213 0.543 -0.094 0.714 0.341 KI 0.356 0.114 0.213 0.358 0.537 -
OeA 0.027 0.192 -0,577 0.187 0.693 -0.334 TTI 0.370 =-0.279 -0.131 0.074 0.530 -
WB 0.489 0.061 0.118 -0.326 0.077 -0.056 STSI -0.421 0.063 0.102 0.107 0.074 -
W7 0.403 -0.408 =-0.016 0.371 -0.006 0.095 DTA 0.032 =-0.381 0.806 -0,.450 0.040 -
(T—Td)7 -0.255 0.630 0.101 =-0.312 0.026 0.113 DTH -0.042 0.763 0.068 =~0.495 0,365 -
(T-Td)8 -0.331 0.196 -0.003 0.653 -0.045 0.415 eg 0.408 0.195 0.077 =0,030 -0.347 -
W 0.460 0.327 ~0.055 0.068 «0.022 0.249 es 0.314 0.355 0.377 0.364 =-0.375 -
Eigenvalues 3.395 1.580 1.220 1.004 0.874 0.698 Eigenvalues 5.346 1.226 0,981 0.881 0.395 0.092
Cumulative 0.377 0.553 0.688 0.800 0.897 0.975 Cumulative 0.594 0.730 0.839 0.937 0.981 0.991
portion portion
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Table 16 (Concluded)

T SR e Ee e

(c) Trigger Parameters

Eigenvectors
Parameter 1 2 3 4 5 6
Ve -0.370 -0.170 0.129 0.013 0.583 =-0.098
é -0.374 =0.079 0.182 -0.254 0.520 =-0.009
DVA -0.012 0.353 0.607 0.615 0.068 0.349
LTHA -0.149 0.576 -0.231 ~-0.443 0.050 0.606
IDIV 0.101 -0.073 -0.689 0,542 0.384 0.224
IMDIV 0.105 -0,702 0.157 -0.118 -0.092 0.670
WTS 0.583 0.037 0.133 -0.152 0.344 -0.047
MDIV 0.583 0.099 0.110 -0.176 0.326 =0.01°
Eigenvalues 2.170 1.079 1.023 0.991 0.938 0.886
Cumulative 0.271 0.406 0.534 0.658 0.775 0.886
portion




the first two components those important variables seem to be equivalent
potential temperature at 700 and 850 mb and the Total-Totals Index.

If we consider all eigenvectors, the top five parameters are OeS—Ges,
static stability index, Oeg’ Total-Totals Index, and differential
thickness (DTH). All stability parameters are highly intercorrelated
and there really should not be many dimensions when they are considered
together.

Principal components for trigger parameters indicate that the
trigger mechanism is difficult to identify from these parameters. The
cumulative variance does not reach 50% until the third eigenvector (com-
pared to first for stability and second for moisture) and 90% is not
reached until eigenvector seven (not shown in Table 16, p. 76, as we stop
at six eigenvectors). Here, important parameters are vertical motion at
the top of the surface layer (this includes terrain induced vertical
motion), surface divergence of moisture, and integrated moisture di-
vergence from 850 to 300 mb.

Finally, all predictor parameters can be considered together. This
case is summarized in Table 17 where only eigenvalues and cumulative
variance.are shown. With five principal components one could account
for 50% of the total variance among all parameters. Seventeen components
could account for 92%. Therefore, it seems justifiable to use at
least five variables in discriminant models and possibly up to 17. The

radar predictor was not included in this analysis.

h. Operational utility

It is rather fortuitous for individual weather station application
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Table 17. Eigenvalues and cumulative portion of total variance accounted
for by each successive eigenvector.

Eigenvector

1 2 3 4 5 6 7 8 9
Eigenvalue 9.677 3,032 2,698 2.055 2.012 1.777 1.336 1.218 1.149

Cumulative 0.276 0.363 0.440 0.499 0.556 0.607 0.645 0.680 0.713
Portion

10 11 12 13 14 15 16 17 18
Eigenvalue 1.026 0.997 0.965 0.918 0.872 0.864 0.761 0.734 0.653

Cumulative 0.742 0.771 0.798 0.825 0.849 0.874 0.896 0.917 0.936
Portion

that none of the more complicated (from a computational standpoint)
parameters were chosen among the top few predictors. 1In a five-vari-
able equation one would have only to evaluate the moisture divergence
term. In order to do this, one needs to plot 1800 GMT mixing ratios
ocbtained from a skew-T diagram along with u and v wind components. A
forecaster should extract values of (1) the product of u x W at two
east-west grid points spaced 130 km apart, 65 km to either side of his
station, and (2) v x W at two similarly spaced north-south grid points.
Negative predicted probabilities are possible but should be con-
sidered as zero. Similarly, probabilities greater than one should be
interpreted as one. The probability threshold for a thunderstorm-no-
thunderstorm decision could be estimated from the 40% postagreement
percentages in the contingency tables from within the dependent or
total samples. The best estimate for either the total, north wind, or
south wind equations is about 0.28. This would optimize prefigurance
at the expense of "crying wolf" and total percent correct. Of course,

this cut-off would be shifted toward lower probabilities when a critical
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(in terms of costs involved) task was involved.

The probabilities can be used directly and the operator should be
encouraged to use these in conjunction with cost analyses. If the costs
of protective action and loss potential for inaction are known, then
the occurrence probabilities can be used in objective cost-loss algo-
rithms (Murphy, 1976).

Operational equations should be developed in given areas with all
data available. Since this study was undertaken, an additional year of
data has been collected. New equations should incorporate all days for
which predictor-predictand samples are available and should be applied
to the subsequent year. So long as a few (five or six) predictors are
used, weather station forecasters within the development area and for
the particular predictor-predictand times could use the equations di-
rectly for estimating the probability of thunderstorms. More complicated
equations which incorporate extensive analysis, and transformed pre-
dictors would be applied to current data at facilities with computer
processing capability. Probabilities could be transmitted to appropriate
locations. This latter procedure is currently employed by the National
Weather Service. (See National Weather Service Technical Procedures
Bulletin 194.)

The following five-variable equations developed from the 1974-1975
sample can be tested with current data and probabilities evaluated:

0.0181 + 0.0185+W + 0.4144MDRP — 0.00278+ (V-WV)

il

Total PY

(8)
- 0.00569%(T-T,) ., - 0.00515*(6e7 - ees)

North wind PY = 1.028 + 0.00337+#W + 0.358+MDRP — 0.00336% (V-WV)

(9)
- 0.00374% (T-T_.)_ - 0.00373%0
a’ 7 e7
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South wind PY = 0,0655 + 0.427*MDRP + 0,0194+W - 0.00265*(§-W§)

(10)
- 0.00583#(T-T ) o — 0.00406% (T-T ),

Coefficients from these equations are valid for the following units of
measure for predictors: W (g kg—l); MDRP (zero or one for no precip

> -
or precip); V (m s l); T, ©, T

4 (K); Ax = Ay = 1.3 (m) in the moisture

divergence calculation. Predicted probabilities would apply to loca-
tions within the developmental area (Fig. 4, p. 32) and are valid with
1800 GMT surface or 1200 GMT upper—air observations. Thunderstorm prob-
abilities (PY) would apply to the area shown in Fig. 6 (p. 39) with re-
spect to the forecasting station and during the period 2000 to 2300 GMT.

Performance in terms of prefigurance and postagreement percentages
of a binary (yes or no) forecast could be expected to be slightly lower
than the 65%, 40% obtained, respectively, with equations containing

more than 15 predictors.

81



6. UPPER-AIR CONDITIONS AT 3-h INTERVALS

On one day, 24 April 1975, upper-air data were available at 3-h
intervals. These were collected as part of the Fourth Atmospheric
Variability Experiment (AVE IV) sponsored by the National Aeronautics
and Space Administration (NASA). Analyzed fields of temperature, height,
dew point, and wind components from a 158-km grid spacing for 49 grid
points and four levels were utilized in a test to determine changes
of correlations and predictors at different times with occurrences of
thunderstorms at 2000-2300 GMT. Analysis procedures are described by
Fuelberg (1970).

Twenty-one candidate predictors were calculated for each grid point
at 1200 GMT, 1500 GMT, and 1800 GMT. The predictand was the highest
MDR value (converted to binary) in an area equivalent to a 138-km box
surrounding the grid point as in previous work and for any time during
the period 2000 to 2300 GMT. Again, variable selection techniques were
used to choose subsets of predictors. Stepwise procedures provided
the first several predictors; all possible regressions were considered
in the selection of variables four through six. A stepdown or backward
elimination procedure was used for those models beyond six variables.
Separate regression analyses were performed for each period, and the
same candidate predictors as discussed earlier were available to each.
Maximum R2 achieved for each model from a one-variable model up to a
model with all 21 variables is shown in Fig. 12. As expected, most of
the explained variance was obtained with the first three variables.

What is surprising is that the 1800 GMT predictor time, which is closest

to the time for which the forecast is made, did not provide a clearly
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Fig. 12. Fractional amount of total variance in thunderstorm occurrence
accounted for by numbers of predictors and a combination of

selection procedures.

superior equation. With models including the leading one and two
predictors, R2 is highest for 1200 GMT and lowest for 1500 GMT though
the differences are slight. Maximum R2 of 0.874 was achieved for the
all~variable model with 1500 GMT data, whereas the maximum R2 seems to
reach a plateau beyond ten variables for the 1800 GMT period. No com-
pletely satisfying explanation is apparent for the lack of improvement

as the predictand time is approached; however, there are some
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possibilities. As pointed out in Section 2, the assumptions inherent
in an analysis of this type are not fulfilled. These errors may be
preventing the measure of true correlations. Secondly, this was one
day for which there were only 49 observations, and many of these were
not independent. I

On this day most of the thunderstorm activity was associated with
two squall lines. As shown in Fig. 13, the first group of cells was
dissipating and moving southeastward between 1200 and 1500 GMT. At
1800 GMT there were few echoes. The second line became active after
2100 GMT. One may hypothesize that there were different atmospheric
environments created by the occurrence or nonoccurrence of convection
at many of the 49 points for each time. Similarly, a discontinuity
existed across the area in the form of a stationary front shown in
Fig. 14. Such a feature complicates the interpretation of results for
all points as each is considered an independent, separate observation.
For example, temperature may be important to thunderstorm development
in the area behind (in the cool air) the front, but its influence may
be masked by the many obqervations in the warm air where it may not
be important at all. Finally, the response of the atmosphere to the
synoptic-scale parameters is being measured. There may be different
response times for different parameters. It is possible that those
upper-air features at 1800 GMT to which the atmosphere responds most
exist on a horizontal and vertical scale smaller than can be resolved
from our data.

Table 18 contains the predictors selected during each of the three

periods. Up to the five-variable model all antecedent predictors are
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Table 18. Summary of AVE IV results for stepwise (A), maximum R2 reduction (B), and stepdown (C)
variable selection techniques.
1200 GMT 1500 GMT 1800 GMT"

Number of [Selection 5 5 2

Variables !Technique Parameter R Parameter R Parametexr R
1 A UWSH 0.341 UWSH 0.287 | DTA 0.302
2 A DTA 0.677 | DIA 0.496 | DTH 0.628
3 A STSI 0.681 | jVgl 0.641 | Og, 0.678
4 B CsSIM 0.700 DTH 0.696 | UWSH 0.729
5 B (T—Td) 7 > 0.710 VSUM 0.721 | IMDIV 0.739
6 B UWSH, IMDIV, |V5l , 0.735 CSIM, ETI, UWSH, 0.734 | CSIM, TTI, §TSI, 0.750

Wg, (T-Tg),, VSUM pra, 1Vgl, prH UWSH, DTA, |Vl

8 o - - - - - -
10 C - - - - - 0.763
12 C - 0.835 - - - 0.778
14 C - 0.849 - 0.842 - 0.796
|
21 (All C - 0.856 - 0.874 - 0.8001
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included. For example, the best five-variable model with 1200 GMT
data includes u-component wind shear, differential temperature advec-
tion, static stability index, mid-level convective instability, and the
dew-point depression at 700 mb., After five predictors different vari-
ables are chosen, some of which were not selected up to that point.
Again, the particular variables selected beyond five should not really
be discussed since theée are undoubtedly more a function of the-
particular selection technique than any physical mechanism,

The first few variables included in the model can be discussed in
that these variables in linear combination are mdst highly correlated
to subsequent thunderstorms on 24 April 1975, The difference between
the u-wind component at 500 and 850 mb is important at the earlier two
times. This term is related to the mean horizontal temperature gradient
in the layer between 850 and 500 mb insofar as the winds are geostrophic.
Differential temperature advection between 850 and 500 mb is also an
important term as it is among the top two predictors for all times.
Temperature advection probably was an important mechanism for creating
the instability on this day. It is interesting to note that the u-compo-
nent wind shear was the first variable selected for the model at both
1200 and 1500 GMT observation times, whereas it is fourth at 1800 GMT.
This may be a consequence of the environmental influence of thunder-
storms present at the earlier times but élmost totally absent at 1800 GMT.
From an energy study of this day, Fuelberg (1976) found strong conver-
sion of potential to kinetic energy associated with intensifying
convection. The maximum conversion was at 400 mb. A selection of

different variables measured at different times or the same variables
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in different order could also be a result of differences in atmospheric
response to dynamic as opposed to thermodynamic parameters. More
work needs to be done in this area.

In summary, the linear combination of upper-air parameters computed
from variables measured 2 to 5 h before the predictand time on 24 April
1975 did not explain more of the variance of thunderstorm occurrence at
2000 to 2300 GMT than those measured 8 to 13 h before. Also, there were
differences in parameters selected at the different times. Differential
temperature advection was important at all times. The vertical wind
shear of the east-west wind component was less important to subsequent
intense convection when the former was computed from 1800 GMT measure-
ments compared to this parameter measured at 1200 or 1500 GMT. These
results may be a consequence of environmental influences of convection
at the earlier two times, since little convection was apparent at 1800

GMT. They also might result from violations of model assumptions.
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7. SUMMARY AND CONCLUSIONS

Surface, upper-air, and radar observations analyzed onto a 65-km
grid were used exclusively to develop equations which relate predictors
to suﬁsequent thunderstorms by classical statistical and parameterization
techniques. Particular attention was devoted to minimizing errors
which result from violations of model assumptions.l Raw data were pro-
cessed to preserve as much detail as can be justified from the original
spacing of observing stations. Every fourth point from a 16 x 16 array
was included to reduce the spatial correlation naturally present in
meteorological data. Variable selection techniques, plots of model
residuals, and principal component analyses were used to reduce the
hulticollinearity present among independent variables. Finally, several
different statistical procedures were used to cross—check and confirm
results.

Specific synoptic parameters believed to be related to intense
convection were calculated from analyses at 1200, 1700, and 1800 GMT
and used as candidate predictors in a stepwise variable-selection pro-
cedure. Surface and upper-air data were tested separately. The pre-
dictand was the occurrence or nonoccurrence of an MDR code of four
or greater (assumed to represent thunderstorms) in an area of about
8500 km2 surrounding a grid point during three subsequent time combina-
tions. The best time was the period from 2000 to 2300 GMT so that only

this combination was used in further analyses.

91



The equations were found to be stablell when applied. to test data.
Also, they contained reasonable‘parameters as predictors and produced
results in contingency tables comparable with present, subjective
techniques and with other statistical procedures. Predicted values
from developmental and test samples represented actual thunderstorm
frequencies of occurrence. This technique can be used to forecast
thunderstorms in an operational environment. Furthermore, thunderstorms
can be predicted with greater success with this scheme when the surface
wind has a northerly component at 1800 GMT.

While not impressive alone, upper-alr data seemed to add an impor-
tant ingredient, namely stability, which is not available from surface
data. Radar echoes present at and before the forecast time also added
an important dimension. MDR code greater than one near 1700 GMT can
lead to MDR of four or greater between 2000 and 2300 GMT due to diurnal
effects, or a high MDR initially might tend to persist in space and
time. In any case, this radar predictor indicates the presence of
vertical motion, a recognized trigger mechanism. Neither time nor space
derivatives as computed in this study were particularly important
predictors with the notable exception of moisture divergence. But the
surface mixing ratio, occurrence of antecedent precipitation, con-
vergence of moisture, and stability were chosen to be among the top

five predictors in every case. A reason for the poor showing of other

11 . . . . .
Stable in this context means that statistics in both the

developmental and test data sample are nearly the same.
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derivatives was that the small-scale gradients important to intense
convection cannot be measured due to data-resolution constraints from
fixed observation networks.

It was found from both the stepwise proéedure and principal-compo-
nent analyses that linear equations should include from five to 17
variables when parameters represent observed surface and upper-air
features. Furthermore, measures of the trigger mechanism were found
to be most difficult to define from data in this study, whereas moisture
parameters were easily defined.

Equations with many variables will produce slightly better results
in terms of prefigurance and postagreement discriminates. Reasonable
values to expect would be 65% and 40%, respectively.

Finally, parameters from upper-air observations at 1800 GMT on
24 April 1974 were not more highly correlated to thunderstorms in the
period 2000-2300 GMT than were parametexrs from observations at 1200 or
1500 GMT. This result may be a consequence of the small statistical
sample, violations of assumptions in the statistical analysis and the
organized development and movement of two groups of thunderstorms. One

group influenced observations from which parameters were calculated at

1200 and 1500 GMT.
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8. SUGGESTIONS FOR FURTHER RESEARCH

In a study of this scope and magnitude there are practical restric-
tions on the amount of data to be handled, numbers of predictors used,
and types of processing to be performed. It is believed that this
research remained within these constraints without sacrificing
scientific thoroughness and accuracy. Nevertheless, these limitations
and results of the investigation itself provide several suggestions
for future research.

a). In order to capture some of the true mesoscale features of
the atmosphere, synchronous meteoroclogical satellite data should be
used. Mesoscale wind fields determined from satellite cloud observa-
tions might be important predictors of severe weather (Houghton and
Wilson, 1975). Time and space derivatives of equivalent black body
temperatures might reveal small-scale features which lead to subsequent
thunderstorms. A microwave sensoxr, such as that flown on the NASA
satellites, would provide indications of soil moisture. Albedo might
be important as well. Some preliminary experiments with regression
procedures and the ATS-3 satellite data by Sikula and Vonder Haar (1972)
indicated satisfactory results when the dependent variables were ceilings
and visibilities and independent variables were satellite radiances.
Even conventional data available from several mesoscale networks
such as HIPLEX (Scoggins and Wilson, 1976), NSSL (Fankhauser, 1969),
and METROMEX (Changnon et al., 1971) could be used in this type of
study to determine what additional information about subsequent thunder-
storms is available for a few areas. Several thunderstorm seasons

must be used, however.
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b). Severe thunderstorms might be predicted from statistical
procedures by use of upper-air winds inferred from satellite thickness
(and geopotential height) calculations. Areas of jet streams and
difluence aloft could be identified and related to severe weather.
Digital radar data now available at several locations (Muench, 1976)
could be used as well as additive data from present MDR reports in con-
junction with severe weather prediction.

c). Different predictors from conventional data could be tested.
For example, present weather, past weather, visibility, wind gusts,
sky conditions and remarks are available from surface observations.
Climatological frequencies of occurrence for thunderstorms could be
computed from all available thunderstorm data and these used as pre-
dictors as well. Use of upper-air data should be expanded to include
all the resolution in the present observation. In addition, time changes
for upper air parameters might be tested. Trajectories of key parameters
might make important predictors. The K Index and TTI could both be
updated by using the temperature and moisture from 1800 GMT surface
observations averaged with those observed at 850 mb 12 h earlier.

d). The area for predictor selection should be allowed to vary
and predictand area reduced. The reduction in correlation due to
reduced size of predictand might be compensated for by parameters from
smaller-scale data sources selected from different areas.

e). More work on the timeliness of upper-air data is required.
Additional days when 3-h data are available should be used to obtain a
more adequate sample. Similarly, further research into the time changes

of surface and upper-air reports should be performed to determine
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atmospheric response times (in terms of producing intense convection)
for various physical processes such as differential advections.

£f). Further work on air mass stratifications would be fruitful.
One might use combinations of temperature, wind and moisture to identify
three or four types of air masses. Five years of digital radar data
will be available for this type of work after the 1977 season.

g). We should continue to investigate random sampling oxr other
ways of reducing the many nonoccurrence days. A forecaster is not
concerned with predicting thunderstorms on the many days that he is
confident there will be none.

h). There should be more investigation into verification techniques

for this type of data.
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APPENDIX A
ANOVA for selected regressions

(1) Total Equations (7 predictors)

Source Degrees of Sum of Squares Mean Square F Value R2
freedom
Model 7 239.94357522 34.27765360 294.91 0.22481796
Error 7118 827.33582417 0.11623150
Corrected 7125 1067.27939938
Total
Parameter Units §_estimate Standard error
Intercept - 3.16740081 -
-1 -1 8
MDIV gg s x 10 -0.00276198 0.00020761
W gg'l 25.43248796 1.64332634
MDRP (1 or 0) 0.39082300 0.01794391
CSIL K -0.00512986 0.00069915
Oe7 K -0.01096999 0.00097647
W, gg'l x 10° 0.05462544 0.00395796
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(2) Northwind equation (7 predictors)

Source Degrees of Sum of Squares Mean Square F Value R2
freedom
Model 7 78.07938810 11.15419830 127.84 0.274014
Error 2371 206.86722812 0.08724894
Corrected 2378 284.,94661623
Total
Parameter Units §_estimate Standard errorxr
Intercept - 1.19350345 0.30434664
-1 -1 8
MDIV gg s x 10 -0.,00303301 0.00034920
(T—Td)7 K -0.00430722 0.00084002
W gg_l 69.09513072 6.42057583
MDRP 0Oor 1l 0.36068872 0.02911004
T K -0.01807394 0.00359192
T-Td K 0.02365490 0.00360711
Oe7 K -0.00485763 0.00101146
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(3) Random Equation (6 predictors)

Source Degrees of Sum of Squares Mean Square F Value R2
freedom
Model 161.91260308 26.98543385 155.31 0.291224
Error 2268 394.05926505 0.17374747
Corrected 2274 555,97186813
Total
Parameter Units §_estimate Standard error
Intercept - 1.57191166 0.46848081
MDIV gg'ls"1 x 10 -0.00340850 0.00039607
(T-Td)7 K -0.00789130 0.00129024
W gg—l 46.44806192 3.21385797
TTI K 0.01232299 0.00144379
@e7 K -0,00650511 0.00150835
MDRP Oor 1l 0.24007083 0.02659094
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(4) Total Equation (20 predictors)

Source Degrees of Sum of Squares Mean Square F Value
freedom -
Model 20 259,37113846 12.96855692 114.05 0.24302084
Error 7105 807.90826092 0.11370982
Corrected 7125 1067.27932938
Total
Parameter Units B estimate Standard error
Intercept - 8.91002397 -
@e K 0.00762649 0.00105337
MDIV ag -1 X 108 -0.00228346 0.00023036
OeA Ks X 106 0.00006796 0.00002784
$2P mb m_2 b4 1012 0.00008997 0.00005411
C s X 106 0.00036562 0.00023066
?2w gg_lm-2 lO15 0.00009605 0.00002797
K1 K 0.01872137 0.00316708
DTH M mb_1 b4 102 -0.00127867 0.00055703
(T—Td)7 K 0.01376441 0.00341045
(T-T3) g K 0.02245995 0.00355782
Ve m 0.00262488 0.00048169
W gg 10.97990075 3.09197109
MDRP (0 or 1) 0.39041505 0.01793046
v m st ~0.00397307  0.00112285
CSIM K -0.15500734 0.02892617
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(4) Total Equation (20 predictors) (Concluded)

Parameter Units B estimate Standard error
STSI mzsg—l 0.01596813  0.00284876
eee K -0.03357575  0.00484179
Oe7 K -0.00633453  0.00142566
Wg gg t* x 10° 0.14166814 0.01732946
u ms L ~0.00565405 0.00146472
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APPENDIX B

Contingency tables for different predicted probabilitj thresholds
dependent equations applied as indicated.

(1) Total dependent equation applied to:

and

Cut off Total independent data Total dependent data
0.22
Yes No
Yes 349 187
No 522 (1712
0.25 Yes No Yes No
Yes 314 222 Yes 559 | 247
No 399 }1835 No 708 |3216
0.28 Yes No
Yes 275 261
No 285 1949
0.30 Yes No Yes No
Yes 243 293 Yes 439 367
No 232 2002 No 419 | 3505
0.32 Yes No
Yes 400 406
No 335 | 3589
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{2) North wind dependent equation applied to:

Cut off Northwind Northwind
independent data dependent data
0.25
Yes No Yes No
Yes 80 42 Yes 16l 57
No 126 638 No 200 | 1200
0.28 Yes No
Yes 78 44
No 104 660
0.30 Yes No Yes No
Yes 72 50 Yes 143 75
No 22 672 No 140 | 1260
0.34 Yes No Yes No
Yes 57 65 Yes 128 90
No 68 696 No 96 | 1304
0.37 Yes No Yes No
Yes 47 75 Yes 114 104
No 54| 710 No 83 | 1317
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(3) Southwind dependent equation applied to:

Cut off Southwind Southwind
’ independent data dependent data
0.25 Yes No Yes No
Yes 238 176 Yes 407 181
No 259 | 1211 No 521 | 2003
0.27 Yes No Yes No
Yes 223 121 Yes 372 216
No - 210| 1260 No 425 | 2099
0.30 Yes No Yes No
Yes 185 229 Yes 330 258
No 1361334 No 311 | 2213
0.33 Yes No
Yes 277 311
No 226 | 2298
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(4) Random sample dependent equation applied to:

Cut off Total independent data
0.42
Yes No
Yes 451 85
No 989 (1245
0.50 Yes No
Yes 408 128
No 706 | 1528
0.65 Yes No
Yes 281 255
No 296 | 1938
Random Random
independent data dependent data
0.46 Yes No
Yes 430 106
No 123 227
0.50 Yes Yes No Yes No

Yes 408 128

Yes 682 124

No 103 262

No 209 395
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